Suppr超能文献

图神经网络的异质分布传播

Heterophilous distribution propagation for Graph Neural Networks.

作者信息

Zheng Zhuonan, Zhou Sheng, Xu Hongjia, Gu Ming, Xu Yilun, Li Ao, Li Yuhong, Gu Jingjun, Bu Jiajun

机构信息

College of Computer Science, Zhejiang University, Hangzhou, 310027, China; Zhejiang Key Laboratory of Accessible Perception and Intelligent Systems, Zhejiang University, Hangzhou, 310027, China.

Zhejiang Key Laboratory of Accessible Perception and Intelligent Systems, Zhejiang University, Hangzhou, 310027, China; School of Software Technology, Zhejiang University, Ningbo, 315048, China.

出版信息

Neural Netw. 2025 Apr;184:107014. doi: 10.1016/j.neunet.2024.107014. Epub 2024 Dec 24.

Abstract

Graph Neural Networks (GNNs) have achieved remarkable success in various graph mining tasks by aggregating information from neighborhoods for representation learning. The success relies on the homophily assumption that nearby nodes exhibit similar behaviors, while it may be violated in many real-world graphs. Recently, heterophilous graph neural networks (HeterGNNs) have attracted increasing attention by modifying the neural message passing schema for heterophilous neighborhoods. However, they suffer from insufficient neighborhood partition and heterophily modeling, both of which are critical but challenging to break through. To tackle these challenges, in this paper, we propose heterophilous distribution propagation (HDP) for graph neural networks. Instead of aggregating information from all neighborhoods, HDP adaptively separates the neighbors into homophilous and heterophilous parts based on the pseudo assignments during training. The heterophilous neighborhood distribution is learned with orthogonality-oriented constraint via a trusted prototype contrastive learning paradigm. Both the homophilous and heterophilous patterns are propagated with a novel semantic-aware message-passing mechanism. We conduct extensive experiments on 9 benchmark datasets with different levels of homophily. Experimental results show that our method outperforms representative baselines on heterophilous datasets.

摘要

图神经网络(GNNs)通过聚合邻域信息进行表示学习,在各种图挖掘任务中取得了显著成功。其成功依赖于同质性假设,即附近节点表现出相似行为,但在许多真实世界的图中这一假设可能会被违背。最近,异质图神经网络(HeterGNNs)通过修改用于异质邻域的神经消息传递模式,引起了越来越多的关注。然而,它们存在邻域划分不足和异质性建模的问题,这两个问题都是关键的,但也是难以突破的挑战。为了解决这些挑战,在本文中,我们提出了用于图神经网络的异质分布传播(HDP)方法。HDP不是从所有邻域聚合信息,而是在训练期间基于伪分配将邻居自适应地分离为同质性和异质性部分。通过可信原型对比学习范式,利用面向正交性的约束来学习异质邻域分布。同质性和异质性模式都通过一种新颖的语义感知消息传递机制进行传播。我们在9个具有不同同质性水平的基准数据集上进行了广泛的实验。实验结果表明,我们的方法在异质数据集上优于代表性基线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验