Suppr超能文献

重新审视基于图的欺诈检测中的低同质性问题。

Revisiting low-homophily for graph-based fraud detection.

作者信息

Huang Tairan, Li Qiutong, Xu Cong, Gao Jianliang, Li Zhao, Zhang Shichao

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

School of Computer Science and Engineering, Central South University, Changsha, China.

出版信息

Neural Netw. 2025 Aug;188:107407. doi: 10.1016/j.neunet.2025.107407. Epub 2025 Mar 22.

Abstract

The openness of Internet stimulates a large number of fraud behaviors which have become a huge threat. Graph-based fraud detectors have attracted extensive interest since the abundant structure information of graph data has proved effective. Conventional Graph Neural Network (GNN) approaches reveal fraudsters based on the homophily assumption. But fraudsters typically generate heterophilous connections and label-imbalanced neighborhood. Such behaviors deteriorate the performance of GNNs in fraud detection tasks due to the low homophily in graphs. Though some recent works have noticed the challenges, they either treat the heterophilous connections as homophilous ones or tend to reduce heterophily, which roughly ignore the benefits from heterophily. In this work, an integrated two-strategy framework HeteGAD is proposed to balance both homophily and heterophily information from neighbors. The key lies in explicitly shrinking intra-class distance and increasing inter-class segregation. Specifically, the Heterophily-aware Aggregation Strategy tease out the feature disparity on heterophilous neighbors and augment the disparity between representations with different labels. And the Homophily-aware Aggregation Strategy are devised to capture the homophilous information in global text and augment the representation similarity with the same label. Finally, two corresponding inter-relational attention mechanisms are incorporated to refine the procedure of modeling the interaction of multiple relations. Experiments are conducted to evaluate the proposed method with two real-world datasets, and demonstrate that the HeteGAD outperforms 11 state-of-the-art baselines for fraud detection.

摘要

互联网的开放性催生了大量欺诈行为,这些行为已构成巨大威胁。基于图的欺诈检测器已引起广泛关注,因为图数据丰富的结构信息已被证明是有效的。传统的图神经网络(GNN)方法基于同质性假设来揭露欺诈者。但欺诈者通常会生成异质连接和标签不平衡的邻域。由于图中的同质性较低,这些行为会降低GNN在欺诈检测任务中的性能。尽管最近的一些工作已经注意到了这些挑战,但它们要么将异质连接视为同质连接,要么倾向于减少异质性,而大致忽略了异质性带来的好处。在这项工作中,提出了一个集成的双策略框架HeteGAD,以平衡来自邻居的同质性和异质性信息。关键在于明确缩小类内距离并增加类间隔离。具体来说,异质性感知聚合策略梳理出异质邻居上的特征差异,并增强具有不同标签的表示之间的差异。而同质性感知聚合策略则旨在捕获全局文本中的同质信息,并增强具有相同标签的表示之间的相似性。最后,引入了两种相应的关系间注意力机制,以完善对多个关系相互作用进行建模的过程。使用两个真实世界的数据集进行了实验,以评估所提出的方法,结果表明HeteGAD在欺诈检测方面优于11个最新的基线方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验