Suppr超能文献

基于肾脏组织病理学的狼疮性肾炎治疗反应多染色深度学习预测模型

Multi-stain deep learning prediction model of treatment response in lupus nephritis based on renal histopathology.

作者信息

Cheng Cheng, Li Bin, Li Jie, Wang Yiqin, Xiao Han, Lian Xingji, Chen Lizhi, Wang Junxian, Wang Haiyan, Qin Shuguang, Yu Li, Wu Tingbo, Peng Sui, Tan Weiping, Ye Qing, Chen Wei, Jiang Xiaoyun

机构信息

Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.

Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.

出版信息

Kidney Int. 2025 Apr;107(4):714-727. doi: 10.1016/j.kint.2024.12.007. Epub 2024 Dec 27.

Abstract

The response of the kidney after induction treatment is one of the determinants of prognosis in lupus nephritis, but effective predictive tools are lacking. Here, we sought to apply deep learning approaches on kidney biopsies for treatment response prediction in lupus nephritis. Patients who received cyclophosphamide or mycophenolate mofetil as induction treatment were included, and the primary outcome was 12-month treatment response, complete response defined as 24-h urinary protein under 0.5 g with normal estimated glomerular filtration rate or within 10% of normal range. The model development cohort included 245 patients (880 digital slides), and the external test cohort had 71 patients (258 digital slides). Deep learning models were trained independently on hematoxylin and eosin-, periodic acid-Schiff-, periodic Schiff-methenamine silver- and Masson's trichrome-stained slides at multiple magnifications and integrated to predict the primary outcome of complete response to therapy at 12 months. Single-stain models showed area under the curves of 0.813, 0.841, 0.823, and 0.862, respectively. Further, integration of the four models into a multi-stain model achieved area under the curves of 0.901 and 0.840 on internal validation and external testing, respectively, which outperformed conventional clinicopathologic parameters including estimated glomerular filtration rate, chronicity index and reduction in proteinuria at three months. Decisive features uncovered by visualization for model prediction included tertiary lymphoid structures, glomerulosclerosis, interstitial fibrosis and tubular atrophy. Our study demonstrated the feasibility of utilizing deep learning on kidney pathology to predict treatment response for lupus patients. Further validation is required before the model could be implemented for risk stratification and to aid in making therapeutic decisions in clinical practice.

摘要

诱导治疗后肾脏的反应是狼疮性肾炎预后的决定因素之一,但缺乏有效的预测工具。在此,我们试图将深度学习方法应用于肾活检,以预测狼疮性肾炎的治疗反应。纳入接受环磷酰胺或霉酚酸酯作为诱导治疗的患者,主要结局为12个月的治疗反应,完全缓解定义为24小时尿蛋白低于0.5g,估计肾小球滤过率正常或在正常范围的10%以内。模型开发队列包括245例患者(880张数字切片),外部测试队列有71例患者(258张数字切片)。深度学习模型在苏木精-伊红、过碘酸-希夫、过碘酸希夫-亚甲胺银和马松三色染色的切片上,以多种放大倍数独立训练,并整合以预测12个月治疗完全缓解的主要结局。单染色模型的曲线下面积分别为0.813、0.841、0.823和0.862。此外,将这四个模型整合为一个多染色模型,内部验证和外部测试的曲线下面积分别为0.901和0.840,优于包括估计肾小球滤过率、慢性指数和三个月时蛋白尿减少在内的传统临床病理参数。模型预测可视化揭示的决定性特征包括三级淋巴结构、肾小球硬化、间质纤维化和肾小管萎缩。我们的研究证明了利用肾脏病理学的深度学习来预测狼疮患者治疗反应的可行性。在该模型可用于风险分层并帮助临床实践中做出治疗决策之前,还需要进一步验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验