Shao Mingyu, Liu Zaihua, Zeng Sibo, Sun Hailong, He Haibo, Adnan Muhammad, Yan Junyao, Shi Liangxing, Han Yongqiang, Lai Chaowei, Fang Yan
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
Environ Res. 2025 Feb 15;267:120712. doi: 10.1016/j.envres.2024.120712. Epub 2024 Dec 27.
The biological carbon pump (BCP) associated with aquatic photosynthesis in karst surface waters converts dissolved inorganic carbon (DIC) into organic carbon. In the context of global climate change, BCP could be an important carbon sink mechanism, ultimately regulating atmospheric carbon dioxide (CO) and mitigating climate change. Because of the high DIC and pH, and low dissolved CO [CO (aq)], the hydrochemical characteristics of karst surface water bodies cause C limitation in BCP efficiency. The effect of CO fertilization on water bodies can promote autochthonous production, thereby creating carbon sinks in such water bodies. The significant sink-enhancement potential of BCP in karst surface water bodies has attracted widespread attention. The stability of the autochthonous organic carbon (AOC) produced by BCP in karst aquatic ecosystems is key to the formation of long-term carbon sinks by carbonate weathering. In this review, we summarize recent progress in the carbonate weathering of carbon sinks in karst surface waters with coupled BCPs. Furthermore, we elucidated the possibility of using CO (aq) fertilization to achieve carbon sinks and its mechanism of action. On this basis, we propose three processes and mechanisms that could affect AOC stability and outline the challenge of accurately estimating carbonate weathering carbon sinks associated with BCP in karst surface waters. Our comprehensive analyses facilitated the identification of the role of karst surface aquatic ecosystems in the global carbon cycle by providing a reference and scientific basis.
与喀斯特地表水中水生光合作用相关的生物碳泵(BCP)将溶解的无机碳(DIC)转化为有机碳。在全球气候变化的背景下,BCP可能是一种重要的碳汇机制,最终调节大气中的二氧化碳(CO₂)并缓解气候变化。由于高DIC、高pH值以及低溶解态CO₂ [CO₂(aq)],喀斯特地表水体的水化学特征导致BCP效率受到碳限制。CO₂施肥对水体的影响可以促进本地生产,从而在此类水体中形成碳汇。喀斯特地表水体中BCP显著的增强汇的潜力已引起广泛关注。BCP在喀斯特水生生态系统中产生的本地有机碳(AOC)的稳定性是通过碳酸盐风化形成长期碳汇的关键。在本综述中,我们总结了耦合BCP的喀斯特地表水中碳汇的碳酸盐风化方面的最新进展。此外,我们阐明了利用CO₂(aq)施肥实现碳汇的可能性及其作用机制。在此基础上,我们提出了可能影响AOC稳定性的三个过程和机制,并概述了准确估算喀斯特地表水中与BCP相关的碳酸盐风化碳汇的挑战。我们的综合分析通过提供参考和科学依据,有助于确定喀斯特地表水生生态系统在全球碳循环中的作用。