Suppr超能文献

基于局部线性小波神经网络的无迹卡尔曼滤波器用于车辆碰撞估计预警系统及确保车辆与基础设施之间的稳定通信。

Local Linear Wavelet Neural Network-Based Unscented Kalman Filter for Vehicle Collision Estimate Warning System and Ensuring Stable Vehicle-to-Infrastructure Communication.

作者信息

Lema Yonas Kebede, Mishra Satyasis, Gelmecha Demissie J

机构信息

Department of ECE, Adama Science and Technology University, Adama, Ethiopia.

Department of ECE, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.

出版信息

Appl Bionics Biomech. 2024 Dec 22;2024:2451501. doi: 10.1155/abb/2451501. eCollection 2024.

Abstract

The accident mortality rates are rapidly increasing due to driver inattention, and traffic accidents become a significant problem on a global scale. For this reason, advanced driver assistance systems (ADASs) are essential to enhance traffic safety measures. However, adverse environmental factors, weather, and light radiation affect the sensors' accuracy. Furthermore, potential risks may go unreported if they obstruct the sensor's line of sight or are outside its limited field of view. To overcome these problems, this research presents a vehicle collision estimate warning system that leverages a combined approach of a local linear wavelet neural network (LLWNN) and an unscented Kalman filter (UKF). The system integrates sensor data and vehicle-to-everything (V2X) communication to enhance the accuracy and reliability of vehicle state estimation and collision prediction. The LLWNN module is responsible for forecasting the future states of the vehicle based on historical sensor measurements. This powerful time-series modeling technique allows the system to anticipate the vehicle's trajectory and potential collision risks. The UKF then optimally fuses the LLWNN predictions with the real-time sensor data, including information received through V2X communication, to generate accurate, up-to-date estimates of the vehicle's state. The V2X technology enables the seamless exchange of critical safety information between the host vehicle, surrounding vehicles, infrastructure, and other road users. This includes data on vehicle position, speed, acceleration, and intended maneuvers. By incorporating this V2X-based situational awareness, the system can better perceive the dynamic traffic environment and identify potential collision threats that may be outside the line of sight or detection range of the vehicle's onboard sensors alone. The LLWNN-based UKF module then processes this rich, multimodal data to provide timely and pertinent collision alerts to the driver. These alerts can warn the driver of impending collisions with distant objects, enabling them to take appropriate evasive action. By implementing this integrated LLWNN-UKF approach leveraging sensor data and V2X communication, we aim to reduce the number of collisions caused by reckless driving, which will lead to a decrease in traffic-related fatalities and injuries.

摘要

由于驾驶员注意力不集中,事故死亡率正在迅速上升,交通事故已成为全球范围内的一个重大问题。因此,先进的驾驶员辅助系统(ADAS)对于加强交通安全措施至关重要。然而,不利的环境因素、天气和光辐射会影响传感器的准确性。此外,如果潜在风险阻碍了传感器的视线或超出其有限的视野范围,可能会未被报告。为了克服这些问题,本研究提出了一种车辆碰撞估计预警系统,该系统利用局部线性小波神经网络(LLWNN)和无迹卡尔曼滤波器(UKF)的组合方法。该系统集成了传感器数据和车联网(V2X)通信,以提高车辆状态估计和碰撞预测的准确性和可靠性。LLWNN模块负责根据历史传感器测量数据预测车辆的未来状态。这种强大的时间序列建模技术使系统能够预测车辆的轨迹和潜在碰撞风险。然后,UKF将LLWNN预测与实时传感器数据(包括通过V2X通信接收到的信息)进行最优融合,以生成车辆状态的准确、最新估计。V2X技术实现了主车辆、周围车辆、基础设施和其他道路使用者之间关键安全信息的无缝交换。这包括车辆位置、速度、加速度和预期机动的数据。通过纳入这种基于V2X的态势感知,系统可以更好地感知动态交通环境,并识别可能单独超出车辆车载传感器视线或检测范围的潜在碰撞威胁。基于LLWNN的UKF模块然后处理这些丰富的多模态数据,向驾驶员提供及时且相关的碰撞警报。这些警报可以警告驾驶员即将与远处物体发生碰撞,使他们能够采取适当的规避行动。通过实施这种利用传感器数据和V2X通信的集成LLWNN-UKF方法,我们旨在减少鲁莽驾驶导致的碰撞数量,这将导致与交通相关的伤亡人数减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bc8/11682865/89846c0b31a6/ABB2024-2451501.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验