Lv Houfu, Lin Le, Zhang Xiaomin, Song Yuefeng, Li Rongtan, Li Jingwei, Matsumoto Hiroaki, Ta Na, Zeng Chaobin, Gong Huimin, Fu Qiang, Wang Guoxiong, Bao Xinhe
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Fundam Res. 2022 Aug 2;4(6):1515-1522. doi: 10.1016/j.fmre.2022.07.010. eCollection 2024 Nov.
The sluggish reaction kinetics of CO electroreduction in perovskite-based cathodes severely limits the efficiency of solid oxide electrolysis cells (SOECs). The construction of the high-density active sites on the perovskite surface is crucial for promoting CO electrolysis in SOEC. In this study, we explore a redox-induced redispersion strategy to produce RhO nanoclusters uniformly anchored on a SrFeRhMoO (SFRhM) perovskite surface with a high density of 36,000 µm. Compared with non-uniformly distributed RhO nanoparticles on SrFeMoO (RhO /SFM) prepared by a conventional impregnation process, the successive reduction and oxidation treatment first exsolves the highly dispersed RhFe alloy nanoparticles on SFRhM and then selectively dissolves the iron species in the RhFe alloy nanoparticles into the bulk of SFRhM, resulting in fully exposed RhO nanoclusters uniformly anchored on the SFRhM surface (RhO @SFRhM). Electrochemical measurements and density functional theory calculations indicate that the high-density RhO @SFRhM interfaces promote CO adsorption and activation during CO electrolysis, thus leading to improved electrocatalytic activity and stability compared to that of its SFRhM and RhO /SFM counterparts.
钙钛矿基阴极中CO电还原的缓慢反应动力学严重限制了固体氧化物电解槽(SOEC)的效率。在钙钛矿表面构建高密度活性位点对于促进SOEC中的CO电解至关重要。在本研究中,我们探索了一种氧化还原诱导的再分散策略,以制备均匀锚定在SrFeRhMoO(SFRhM)钙钛矿表面的RhO纳米团簇,其具有36,000 µm的高密度。与通过传统浸渍工艺制备的SrFeMoO上分布不均匀的RhO纳米颗粒(RhO /SFM)相比,连续的还原和氧化处理首先使SFRhM上高度分散的RhFe合金纳米颗粒析出,然后选择性地将RhFe合金纳米颗粒中的铁物种溶解到SFRhM主体中,从而导致完全暴露的RhO纳米团簇均匀锚定在SFRhM表面(RhO @SFRhM)。电化学测量和密度泛函理论计算表明,高密度的RhO @SFRhM界面在CO电解过程中促进了CO的吸附和活化,因此与其SFRhM和RhO /SFM对应物相比,具有更高的电催化活性和稳定性。