Yuan Jianan, Chi Ding, Cogollo-Olivo Beatriz H, Wang Yunlong, Xia Kang, Sun Jian
National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
Applied Math Institute, University of Cartagena, Cartagena de Indias 130001, Colombia.
Fundam Res. 2022 Dec 30;4(6):1474-1479. doi: 10.1016/j.fmre.2022.10.017. eCollection 2024 Nov.
In recent decades, pentazolate salts have gained considerable attention as high energy density materials (HEDMs). Using the machine-learning accelerated structure searching method, we predicted four pentazolate salts stabilized with tetravalent metals (Ti-N and Zr-N). Specifically, the ground state MN (M = Ti, Zr) adopts the space-group 4/ under ambient conditions, transforming into the -4 phase at higher pressure. Moreover, the -4-MN becomes energetically stable at moderate pressure (46.8 GPa for TiN , 38.7 GPa for ZrN ). Anharmonic phonon spectrum calculations demonstrate the dynamic stabilities of these MN phases. Among them, the 4/ phase can be quenched to 0 GPa. Further ab-initio molecular dynamic simulations suggest that the N rings within these MN systems can still maintain integrity at finite temperatures. Calculations of the projected crystal orbital Hamilton population and reduced density gradient revealed their covalent and noncovalent interactions, respectively. The aromaticity of the N ring was investigated by molecular orbital theory. Finally, we predicted that these MN compounds have very high energy densities and exhibit good detonation velocities and pressures, compared to the HMX explosive. These calculations enrich the family of pentazolate compounds and may also guide future experiments.
近几十年来,叠氮酸盐作为高能量密度材料(HEDMs)受到了广泛关注。我们使用机器学习加速结构搜索方法,预测了四种由四价金属(Ti-N和Zr-N)稳定的叠氮酸盐。具体而言,基态MN (M = Ti,Zr)在环境条件下采用空间群4/,在更高压力下转变为-4相。此外,-4-MN 在中等压力下(TiN 为46.8 GPa,ZrN 为38.7 GPa)能量上变得稳定。非谐声子谱计算证明了这些MN 相的动力学稳定性。其中,4/相可以淬火到0 GPa。进一步的第一性原理分子动力学模拟表明,这些MN 体系中的N 环在有限温度下仍能保持完整性。对投影晶体轨道哈密顿量和约化密度梯度的计算分别揭示了它们的共价和非共价相互作用。通过分子轨道理论研究了N 环的芳香性。最后,我们预测这些MN 化合物具有非常高的能量密度,与HMX炸药相比,具有良好的爆速和爆压。这些计算丰富了叠氮酸盐化合物家族,也可能指导未来的实验。