Woodward Ian R, Yu Yinkui, Fromen Catherine A
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716.
Device. 2024 Dec 20;2(12). doi: 10.1016/j.device.2024.100514. Epub 2024 Aug 21.
Modeling aerosol dynamics in the airways is challenging, and most modern personalized tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute. We show that the TIDAL system is easily coupled with industrially and clinically relevant devices for aerosol therapeutics. Using a vibrating mesh nebulizer, we report central-to-peripheral (C:P) aerosol deposition measurements aligned with both and benchmarks. These findings underscore the effectiveness of the TIDAL model in predicting airway deposition dynamics for inhalable therapeutics.
模拟气道中的气溶胶动力学具有挑战性,并且大多数现代个性化工具仅考虑单次吸气动作,且吸入的肺容积不到总肺容积的10%。在此,我们展示了一种建模流程,以制造一种设备,该设备能保留患者特定的上呼吸道,同时近似更深的气道,能够实现超过7升的总肺容积。这个名为TIDAL的模块化系统包括可调的吸入和呼出呼吸功能,静息流速高达每分钟30升。我们表明,TIDAL系统很容易与用于气溶胶治疗的工业和临床相关设备相结合。使用振动网式雾化器,我们报告了与 和 基准一致的中央到外周(C:P)气溶胶沉积测量结果。这些发现强调了TIDAL模型在预测可吸入治疗药物气道沉积动力学方面的有效性。