Suppr超能文献

变革急性中风护理:对美国食品药品监督管理局批准的作为中风分诊医疗设备的软件的综述。

Revolutionizing Acute Stroke Care: A Review of Food and Drug Administration-Approved Software as Medical Devices for Stroke Triage.

作者信息

Haq Mahdi, Derhab Mohamed, Saeed Reeda, Khan Hasan, Mushhood Ur Rehman Muhammad

机构信息

Neurology, NeuroCareAI, Dallas, USA.

Neurology, Mayo Clinic, Rochester, USA.

出版信息

Cureus. 2024 Nov 28;16(11):e74686. doi: 10.7759/cureus.74686. eCollection 2024 Nov.

Abstract

Stroke remains a critical global health challenge, with ischemic stroke comprising most cases and necessitating rapid, effective treatment to improve patient outcomes. This review explores the integration of artificial intelligence (AI) and machine learning into medical devices for stroke triaging, highlighting their impact on reducing notification times, latency in care, and health disparities. By analyzing Food and Drug Administration-approved AI-enabled devices under the "Radiological computer-assisted triage and notification software" regulation category, we assess their sensitivity, specificity, and time-to-notification as the measure of their overall effectiveness in clinical settings. The review identifies 29 such devices, examining their technological capabilities, notification methods, and performance metrics. Key findings provide insights into the potential of AI in enhancing diagnostic accuracy, expediting treatment, and addressing health inequalities. Despite the promising advances, challenges remain in the regulatory landscape and real-world application of these technologies. Future directions emphasize the need for comprehensive clinical trials and deeper algorithmic insights. Collaborative efforts among technology developers, healthcare providers, and policymakers are essential for the successful integration of AI in stroke care to ensure improved patient outcomes and equitable access to advanced medical technologies.

摘要

中风仍然是一项严峻的全球健康挑战,缺血性中风占大多数病例,需要快速、有效的治疗以改善患者预后。本综述探讨了人工智能(AI)和机器学习在中风分诊医疗设备中的整合,强调了它们对减少通知时间、护理延迟和健康差距的影响。通过分析食品药品监督管理局(FDA)批准的、属于“放射计算机辅助分诊和通知软件”监管类别的人工智能设备,我们评估它们的敏感性、特异性和通知时间,以此作为它们在临床环境中整体有效性的衡量标准。该综述识别出29种此类设备,研究了它们的技术能力、通知方法和性能指标。主要发现为人工智能在提高诊断准确性、加快治疗和解决健康不平等方面的潜力提供了见解。尽管取得了令人鼓舞的进展,但在这些技术的监管环境和实际应用中仍存在挑战。未来的方向强调需要进行全面的临床试验和更深入的算法洞察。技术开发者、医疗保健提供者和政策制定者之间的合作努力对于人工智能在中风护理中的成功整合至关重要,以确保改善患者预后并公平获得先进医疗技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7b/11681945/4c2d90c0ed9f/cureus-0016-00000074686-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验