Suppr超能文献

光子计数探测器在MV-kV双能计算机断层扫描成像中的应用

Utility of photon-counting detectors for MV-kV dual-energy computed tomography imaging.

作者信息

Jadick Giavanna, Ventura Maya, La Rivière Patrick J

机构信息

University of Chicago, Department of Radiology, Chicago, Illinois, United States.

University of Chicago Medical Center, Comprehensive Cancer Center, Chicago, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2024 Dec;11(Suppl 1):S12811. doi: 10.1117/1.JMI.11.S1.S12811. Epub 2024 Dec 26.

Abstract

PURPOSE

High soft-tissue contrast imaging is essential for effective radiotherapy treatment. This could potentially be realized using both megavoltage and kilovoltage x-ray sources available on some therapy treatment systems to perform "MV-kV" dual-energy (DE) computed tomography (CT). However, noisy megavoltage images obtained with existing energy-integrating detectors (EIDs) are a limiting factor for clinical translation. We explore the potential for non-spectral photon-counting detectors (PCDs) to improve MV-kV image quality simply by equally weighting all MV photons rather than up-weighting the less informative, lower contrast high-energy photons as in an EID.

APPROACH

Three computational methods were applied to compare non-spectral PCDs with EIDs in MV-kV DE imaging. A single-line integral estimation theory approach was used to calculate the basis material signal-to-noise ratio (SNR) of tissue (1 to 50 cm) and bone (0.1 to 10 cm). CT images of a tissue cylinder with seven bone inserts (densities 1.0 to ) were simulated to assess material decomposition accuracy. Multiple noisy simulations of an anthropomorphic phantom were performed to generate pixel-by-pixel noise profiles.

RESULTS

PCDs yielded a 15% to 45% improvement in single-line integral SNR for both materials. In CT simulations, similar material decomposition accuracy was achieved, with both EIDs and PCDs slightly underestimating bone density. However, PCDs yield a higher contrast-to-noise ratio and more uniform noise texture than EIDs in virtual monoenergetic images.

CONCLUSIONS

We demonstrate the potential for improved MV-kV DE CT imaging using non-spectral PCDs and quantify the degree of improvement in a range of object compositions. This work motivates the experimental assessment of PCDs for megavoltage imaging and the potential clinical translation of PCDs to radiotherapy imaging.

摘要

目的

高软组织对比度成像对于有效的放射治疗至关重要。利用某些治疗系统上可用的兆伏级和千伏级X射线源来进行“MV-kV”双能(DE)计算机断层扫描(CT),有可能实现这一点。然而,使用现有的能量积分探测器(EID)获得的兆伏级图像噪声是临床转化的一个限制因素。我们探讨了非光谱光子计数探测器(PCD)通过对所有兆伏级光子进行均等加权,而不是像EID那样对信息较少、对比度较低的高能光子进行加权来提高MV-kV图像质量的潜力。

方法

应用三种计算方法在MV-kV DE成像中比较非光谱PCD和EID。使用单线积分估计理论方法计算组织(1至50厘米)和骨骼(0.1至10厘米)的基础物质信噪比(SNR)。模拟了带有七个骨插入物(密度为1.0至 )的组织圆柱体的CT图像,以评估物质分解精度。对一个人体模型进行了多次噪声模拟,以生成逐像素的噪声剖面图。

结果

两种材料的单线积分SNR,PCD均提高了15%至45%。在CT模拟中,实现了相似的物质分解精度,EID和PCD都略微低估了骨密度。然而,在虚拟单能图像中,PCD比EID产生更高的对比度噪声比和更均匀的噪声纹理。

结论

我们证明了使用非光谱PCD改善MV-kV DE CT成像的潜力,并量化了一系列物体组成中的改善程度。这项工作推动了对PCD用于兆伏级成像的实验评估以及PCD在放射治疗成像中的潜在临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eaf/11670364/d64fd0ea6716/JMI-011-S12811-g001.jpg

相似文献

1
3
Number of energy windows for photon counting detectors: is more actually more?光子计数探测器的能量窗数量:更多真的更好吗?
J Med Imaging (Bellingham). 2024 Dec;11(Suppl 1):S12807. doi: 10.1117/1.JMI.11.S1.S12807. Epub 2024 Sep 20.

本文引用的文献

4
The technical development of photon-counting detector CT.光子计数探测器 CT 的技术发展。
Eur Radiol. 2023 Aug;33(8):5321-5330. doi: 10.1007/s00330-023-09545-9. Epub 2023 Apr 4.
5
Spectral Photon Counting CT: Imaging Algorithms and Performance Assessment.光谱光子计数CT:成像算法与性能评估
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):453-464. doi: 10.1109/trpms.2020.3007380. Epub 2020 Jul 7.
6
Compton coincidence in silicon photon-counting CT detectors.硅光子计数CT探测器中的康普顿符合
J Med Imaging (Bellingham). 2022 Jan;9(1):013501. doi: 10.1117/1.JMI.9.1.013501. Epub 2022 Feb 8.
8
1-μm spatial resolution in silicon photon-counting CT detectors.硅光子计数CT探测器中的1微米空间分辨率。
J Med Imaging (Bellingham). 2021 Nov;8(6):063501. doi: 10.1117/1.JMI.8.6.063501. Epub 2021 Nov 18.
10
Photon-counting CT review.光子计数 CT 综述。
Phys Med. 2020 Nov;79:126-136. doi: 10.1016/j.ejmp.2020.10.030. Epub 2020 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验