Kim Sunghun, Yoo Seulki, Xie Ke, Royer Jessica, Larivière Sara, Byeon Kyoungseob, Lee Jong Eun, Park Yeongjun, Valk Sofie L, Bernhardt Boris C, Hong Seok-Jun, Park Hyunjin, Park Bo-Yong
Department of Artificial Intelligence, Sungkyunkwan University, Suwon, Republic of Korea.
Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
Netw Neurosci. 2024 Dec 10;8(4):1009-1031. doi: 10.1162/netn_a_00382. eCollection 2024.
The study of large-scale brain connectivity is increasingly adopting unsupervised approaches that derive low-dimensional spatial representations from high-dimensional connectomes, referred to as gradient analysis. When translating this approach to study interindividual variations in connectivity, one technical issue pertains to the selection of an appropriate group-level template to which individual gradients are aligned. Here, we compared different group-level template construction strategies using functional and structural connectome data from neurotypical controls and individuals with autism spectrum disorder (ASD) to identify between-group differences. We studied multimodal magnetic resonance imaging data obtained from the Autism Brain Imaging Data Exchange (ABIDE) Initiative II and the Human Connectome Project (HCP). We designed six template construction strategies that varied in whether (1) they included typical controls in addition to ASD; or (2) they mapped from one dataset onto another. We found that aligning a combined subject template of the ASD and control subjects from the ABIDE Initiative onto the HCP template exhibited the most pronounced effect size. This strategy showed robust identification of ASD-related brain regions for both functional and structural gradients across different study settings. Replicating the findings on focal epilepsy demonstrated the generalizability of our approach. Our findings will contribute to improving gradient-based connectivity research.
大规模脑连接性研究越来越多地采用无监督方法,这些方法从高维连接组中导出低维空间表示,即梯度分析。在将这种方法用于研究个体间连接性差异时,一个技术问题涉及选择一个合适的组水平模板,个体梯度将与之对齐。在这里,我们使用来自神经典型对照组和自闭症谱系障碍(ASD)个体的功能和结构连接组数据,比较了不同的组水平模板构建策略,以识别组间差异。我们研究了从自闭症脑成像数据交换(ABIDE)计划II和人类连接组计划(HCP)获得的多模态磁共振成像数据。我们设计了六种模板构建策略,它们在以下方面有所不同:(1)除了ASD个体外,是否纳入典型对照组;或(2)是否从一个数据集映射到另一个数据集。我们发现,将来自ABIDE计划的ASD和对照个体的组合受试者模板与HCP模板对齐,表现出最显著的效应量。该策略在不同研究设置下,对功能和结构梯度均能稳健识别与ASD相关的脑区。在局灶性癫痫中重复这些发现证明了我们方法的普遍性。我们的发现将有助于改进基于梯度的连接性研究。
Netw Neurosci. 2024-12-10
Mol Autism. 2024-9-11
Mol Autism. 2025-3-26
Neuroimage. 2018-1-31
Cochrane Database Syst Rev. 2022-2-1
Front Neurosci. 2017-3-21
Front Neurosci. 2025-3-17
Sci Data. 2025-3-29
Mol Autism. 2025-3-26
Sci Bull (Beijing). 2022-5-30
Hum Brain Mapp. 2023-2-1
Sci Data. 2022-9-15
Neuroimage. 2022-11
Neuroimage. 2022-7-1