Suppr超能文献

揭示多囊卵巢综合征的分子格局:通过生物信息学和孟德尔随机化确定核心基因及因果关系。

Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.

作者信息

He Yifang, Wang Yanli, Wang Xiali, Deng Shuangping, Wang Dandan, Huang Qingqing, Lyu Guorong

机构信息

Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.

Departments of Medical Imaging, Quanzhou Medical College, Quanzhou, China.

出版信息

Front Endocrinol (Lausanne). 2024 Dec 13;15:1431200. doi: 10.3389/fendo.2024.1431200. eCollection 2024.

Abstract

BACKGROUND

Polycystic ovary syndrome (PCOS) is a complex endocrine disorder with various contributing factors. Understanding the molecular mechanisms underlying PCOS is essential for developing effective treatments. This study aimed to identify hub genes and investigate potential molecular mechanisms associated with PCOS through a combination of bioinformatics analysis and Mendelian randomization (MR).

METHODS

This study employed bioinformatics analysis in conjunction with MR methods using publicly available databases to identify hub genes. We employed complementary MR methods, including inverse-variance weighted (IVW), to determine the causal relationship between the hub genes and PCOS. Sensitivity analyses were performed to ensure results reliability. Enrichment analysis and immune infiltration analysis were further conducted to assess the role and mechanisms of hub genes in the development of PCOS. Additionally, we validated hub gene expression in both an animal model and serum samples from PCOS patients using qRT-PCR.

RESULTS

IVW analysis revealed significant associations between 10 hub genes and the risk of PCOS: CD93 [= 0.004; 95%= 1.150 (1.046, 1.264)], CYBB [= 0.013; 95%= 1.650 (1.113,2.447)], DOCK8 [= 0.048; 95%= 1.223 (1.002,1.494)], IRF1 [= 0.036; 95%= 1.343 (1.020,1.769)], MBOAT1 [= 0.033; 95%= 1.140 (1.011,1.285)], MYO1F [= 0.012; 95%= 1.325 (1.065,1.649)], NLRP1 [= 0.020; 95%= 1.143 (1.021,1.280)], NOD2 [= 0.002; 95%= 1.139 (1.049,1.237)], PIK3R1 [= 0.040; OR 95%= 1.241 (1.010,1.526)], PTER [= 0.015; 95%= 0.923 (0.866,0.984)]. No heterogeneity and pleiotropy were observed. Hub genes mainly enriched in positive regulation of cytokine production and TNF signaling pathway, and exhibited positive or negative correlations with different immune cells in individuals with PCOS. qRT-PCR validation in both the rat model and patient serum samples confirmed hub gene expression trends consistent with our combined analysis results.

CONCLUSIONS

Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.

摘要

背景

多囊卵巢综合征(PCOS)是一种具有多种促成因素的复杂内分泌紊乱疾病。了解PCOS潜在的分子机制对于开发有效的治疗方法至关重要。本研究旨在通过生物信息学分析和孟德尔随机化(MR)相结合的方法,识别关键基因并研究与PCOS相关的潜在分子机制。

方法

本研究采用生物信息学分析并结合MR方法,利用公开可用的数据库来识别关键基因。我们采用了包括逆方差加权(IVW)在内的互补MR方法,以确定关键基因与PCOS之间的因果关系。进行敏感性分析以确保结果的可靠性。进一步进行富集分析和免疫浸润分析,以评估关键基因在PCOS发生发展中的作用和机制。此外,我们使用qRT-PCR在动物模型和PCOS患者的血清样本中验证了关键基因的表达。

结果

IVW分析显示10个关键基因与PCOS风险之间存在显著关联:CD93[=0.004;95%=1.150(1.046,1.264)],CYBB[=0.013;95%=1.650(1.113,2.447)],DOCK8[=0.048;95%=1.223(1.002,1.494)],IRF1[=0.036;95%=1.343(1.020,1.769)],MBOAT1[=0.033;95%=1.140(1.011,1.285)],MYO1F[=0.012;95%=1.325(1.065,1.649)],NLRP1[=0.020;95%=1.143(1.021,1.280)],NOD2[=0.002;95%=1.139(1.049,1.237)],PIK3R1[=0.040;OR 95%=1.241(1.010,1.526)],PTER[=0.015;95%=0.923(0.866,0.984)]。未观察到异质性和多效性。关键基因主要富集于细胞因子产生的正调控和TNF信号通路,并且在PCOS个体中与不同免疫细胞呈现正相关或负相关。大鼠模型和患者血清样本中的qRT-PCR验证证实了关键基因的表达趋势与我们的综合分析结果一致。

结论

我们的生物信息学与MR分析表明,CD93、CYBB、DOCK8、IRF1、MBOAT1、MYO1F、NLRP1、NOD2、PIK3R1增加PCOS风险,而PTER降低PCOS风险。这一发现对疾病诊断、预后、治疗策略的临床决策具有重要意义,并为药物开发开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f21/11671271/8b589a4bce01/fendo-15-1431200-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验