Suppr超能文献

质子隧穿使癌细胞中发生质子耦合电子转移过程。

Proton Tunneling Allows a Proton-Coupled Electron Transfer Process in the Cancer Cell.

作者信息

Zhang Tong, Ghosh Arindam, Behringer-Pließ Lisa, Chouhan Lata, Cunha Ana V, Havenith Remco W A, Butkevich Eugenia, Zhang Lei, Vázquez Olalla, Debroye Elke, Enderlein Jörg, Das Shoubhik

机构信息

Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium.

Third Institute of Physics - Biophysics, Georg-August-Universität Göttingen, Göttingen 37077, Germany.

出版信息

JACS Au. 2024 Dec 10;4(12):4856-4865. doi: 10.1021/jacsau.4c00815. eCollection 2024 Dec 23.

Abstract

Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia. To observe this depletion process in the cancer cell, we monitored the oxidative-stress-induced depolarization of mitochondrial inner membrane potential (MMP) using fluorescence lifetime imaging microscopy (FLIM). Typically, increasing metabolic stress of cancer cells is reflected in a nontrivial change in the fluorophore's fluorescence lifetime. After 30 min of irradiation, we observed a shift in the mean lifetime value and a drastic drop in overall fluorescence signal. In addition, our PCET strategy resulted in drastic reorganization of mitochondrial morphology from tubular to vesicle-like and causing an overall depletion of intact mitochondria in the hypodermis of . These observations confirmed that PCET promoted ROS-induced oxidative stress. Finally, we gained a clear understanding of the proton tunneling effect in the PCET process through photoluminescence experiments and DFT calculations.

摘要

质子耦合电子转移(PCET)是一种基本的氧化还原过程,在许多生物过程中选择性激活具有挑战性的C-H键方面具有明显优势。受此激活过程的启发,我们旨在通过调节质子隧穿在癌细胞中开发一种简便的PCET过程。这种方法应该能够设计出一种替代的光动力疗法(PDT),该疗法可耗尽线粒体电子传递链(ETC),这是缺氧条件下癌细胞中的关键氧化还原调节因子。为了在癌细胞中观察这种耗尽过程,我们使用荧光寿命成像显微镜(FLIM)监测了氧化应激诱导的线粒体内膜电位(MMP)去极化。通常,癌细胞代谢应激的增加反映在荧光团荧光寿命的显著变化中。照射30分钟后,我们观察到平均寿命值发生偏移,整体荧光信号急剧下降。此外,我们的PCET策略导致线粒体形态从管状急剧重组为囊泡状,并导致皮下完整线粒体的整体耗尽。这些观察结果证实PCET促进了ROS诱导的氧化应激。最后,我们通过光致发光实验和密度泛函理论(DFT)计算清楚地了解了PCET过程中的质子隧穿效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b5f/11672552/7457a12cf89f/au4c00815_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验