Suppr超能文献

小龙虾巨轴突与快速屈肌运动神经元之间通路的节段差异。

Segmental differences in pathways between crayfish giant axons and fast flexor motoneurons.

作者信息

Miller L A, Hagiwara G, Wine J J

出版信息

J Neurophysiol. 1985 Jan;53(1):252-65. doi: 10.1152/jn.1985.53.1.252.

Abstract

We have used electrophysiological techniques to document segmental differences in the pathways between the giant, escape command axons, lateral giants (LG) and medial giants (MG), and the nongiant, fast flexor (FF) motoneurons. We found no difference in the input from LG and MG axons to FF motoneurons in the posterior (4th and 5th) ganglia. Since flexor motor output in these segments would be inconsistent with the LG-evoked behavior pattern, this finding was puzzling. Electromyographic (EMG) recordings during escape responses by intact unrestrained animals confirm that the FF muscles innervated by the posterior ganglia are not excited during LG-mediated tailflips, but are excited during MG-mediated tailflips. In the 2nd and 3rd ganglia, the command axons fire the FF motoneurons with high probability, in part via electrical excitatory postsynaptic potentials (EPSPs) from premotor neurons, the segmental giants (SG). In the 4th and 5th ganglia, the equivalent pathway is much less effective. Single, directly elicited impulses in SGs in ganglia 2 and 3 fire their respective FF motoneurons with high probability, while those in ganglia 4 and 5 rarely fire FF motoneurons. The command axons fire the SGs reliably in all segments. The amplitude of the SG-evoked EPSP in FF motoneurons is significantly smaller in posterior vs. anterior ganglia. For technical reasons, we are unable to present conclusive evidence on ganglionic variations in FF-motoneuron thresholds. The FF motoneurons receive additional excitatory input from intersegmental interneurons recruited by the command neurons. Motoneurons in ganglia 4 and 5 are excited by large interneurons that do not synapse on motoneurons in ganglia 2 and 3, but this additional input is not sufficient to compensate for the weaker effect of SG input. Unlike the all-or-none segmental differences demonstrated previously for the LG-to-motor giant pathway (24), the SG-to-FF pathway changes gradually, retains significant though subthreshold strength in posterior ganglia, and is common to both LGs and MGs. These features provide opportunities for variation in the spatial patterning of flexion and in the resulting escape trajectories.

摘要

我们运用电生理技术记录了巨型逃逸指令轴突、外侧巨轴突(LG)和内侧巨轴突(MG)与非巨型快肌(FF)运动神经元之间通路的节段性差异。我们发现,在后侧(第4和第5)神经节中,LG和MG轴突对FF运动神经元的输入没有差异。由于这些节段中的屈肌运动输出与LG诱发的行为模式不一致,这一发现令人困惑。完整无束缚动物在逃逸反应期间的肌电图(EMG)记录证实,后神经节支配的FF肌肉在LG介导的甩尾过程中未被兴奋,但在MG介导的甩尾过程中被兴奋。在第2和第3神经节中,指令轴突以高概率激发FF运动神经元,部分是通过来自运动前神经元即节段巨轴突(SG)的电兴奋性突触后电位(EPSP)。在第4和第5神经节中,等效通路的效果要差得多。在第2和第3神经节中,SG单次直接诱发的冲动以高概率激发各自的FF运动神经元,而在第4和第5神经节中,这些冲动很少能激发FF运动神经元。指令轴突在所有节段中都能可靠地激发SG。与前侧神经节相比,SG诱发的FF运动神经元EPSP的幅度在后侧神经节中明显更小。由于技术原因,我们无法提供关于FF运动神经元阈值的神经节变化的确凿证据。FF运动神经元从指令神经元募集的节间中间神经元接收额外的兴奋性输入。第4和第5神经节中的运动神经元受到大型中间神经元的兴奋,这些中间神经元不与第2和第3神经节中的运动神经元形成突触,但这种额外输入不足以补偿SG输入较弱的影响。与先前证明的LG到运动巨轴突通路的全或无节段性差异不同(24),SG到FF通路是逐渐变化的,在后侧神经节中保留了显著但低于阈值的强度,并且LG和MG都具有。这些特征为屈曲的空间模式以及由此产生的逃逸轨迹的变化提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验