Suppr超能文献

虹膜炎患者半球间同步受损及基于机器学习的分类:一项功能磁共振成像研究

Impaired interhemispheric synchrony in patients with iridocyclitis and classification using machine learning: an fMRI study.

作者信息

Tong Yan, Wen Zhi, Huang Xin

机构信息

Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.

Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.

出版信息

Front Immunol. 2024 Dec 16;15:1474988. doi: 10.3389/fimmu.2024.1474988. eCollection 2024.

Abstract

BACKGROUND

This study examined the interhemispheric integration function pattern in patients with iridocyclitis utilizing the voxel-mirrored homotopic connectivity (VMHC) technique. Additionally, we investigated the ability of VMHC results to distinguish patients with iridocyclitis from healthy controls (HCs), which may contribute to the development of objective biomarkers for early diagnosis and intervention in clinical set.

METHODS

Twenty-six patients with iridocyclitis and twenty-six matched HCs, in terms of sex, age, and education level, underwent resting-state functional magnetic resonance imaging (fMRI) examinations. The study employed the voxel-mirrored homotopic connectivity (VMHC) technique to evaluate interhemispheric integration functional connectivity indices at a voxel-wise level. The diagnostic efficacy of VMHC was evaluated using a support vector machine (SVM) classifier, with classifier performance assessed through permutation test analysis. Furthermore, correlation analyses was conducted to investigate the associations between mean VMHC values in various brain regions and clinical features.

RESULTS

Patients with iridocyclitis exhibited significantly reduced VMHC signal values in the bilateral inferior temporal gyrus, calcarine, middle temporal gyrus, and precuneus compared to HCs (voxel-level P < 0.01, Gaussian Random Field correction; cluster-level P < 0.05). Furthermore, the extracted resting-state zVMHC features effectively classified patients with iridocyclitis and HCs, achieving an area under the receiver operating characteristic curve (AUC) of 0.74 and an overall accuracy of 0.673 (P < 0.001, non-parametric permutation test).

CONCLUSION

Our findings reveal disrupted interhemispheric functional organization in patients with iridocyclitis, offering insight into the pathophysiological mechanisms associated with vision loss and cognitive dysfunction in this patient population. This study also highlights the potential of machine learning in ophthalmology and the importance of establishing objective biomarkers to address diagnostic heterogeneity.

摘要

背景

本研究利用体素镜像同伦连接(VMHC)技术,研究了虹膜炎患者的半球间整合功能模式。此外,我们还研究了VMHC结果区分虹膜炎患者与健康对照(HCs)的能力,这可能有助于开发用于临床早期诊断和干预的客观生物标志物。

方法

26例虹膜炎患者和26例在性别、年龄和教育水平相匹配的HCs接受了静息态功能磁共振成像(fMRI)检查。该研究采用体素镜像同伦连接(VMHC)技术,在体素水平上评估半球间整合功能连接指数。使用支持向量机(SVM)分类器评估VMHC的诊断效能,并通过置换检验分析评估分类器性能。此外,进行相关性分析以研究不同脑区的平均VMHC值与临床特征之间的关联。

结果

与HCs相比,虹膜炎患者双侧颞下回、距状裂、颞中回和楔前叶的VMHC信号值显著降低(体素水平P<0.01,高斯随机场校正;簇水平P<0.05)。此外,提取的静息态zVMHC特征有效地对虹膜炎患者和HCs进行了分类,受试者工作特征曲线(AUC)下面积为0.74,总体准确率为0.673(P<0.001,非参数置换检验)。

结论

我们的研究结果揭示了虹膜炎患者半球间功能组织的破坏,为深入了解该患者群体中与视力丧失和认知功能障碍相关的病理生理机制提供了线索。本研究还强调了机器学习在眼科中的潜力以及建立客观生物标志物以解决诊断异质性的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/216e/11683089/0a7f020f62b4/fimmu-15-1474988-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验