Suppr超能文献

利用大规模多中心数据集揭示与自闭症谱系障碍相关的稳健空间协方差灰质模式。

Robust Autism Spectrum Disorder-Related Spatial Covariance Gray Matter Pattern Revealed With a Large-Scale Multi-Center Dataset.

作者信息

Ma Sheng-Zhi, Wang Xing-Ke, Yang Chen, Dong Wen-Qiang, Chen Dan-Dan, Song Chao, Zhang Qiu-Rong, Zang Yu-Feng, Yuan Li-Xia

机构信息

Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.

Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.

出版信息

Autism Res. 2025 Feb;18(2):312-324. doi: 10.1002/aur.3303. Epub 2024 Dec 31.

Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder and its underlying neuroanatomical mechanisms still remain unclear. The scaled subprofile model of principal component analysis (SSM-PCA) is a data-driven multivariate technique for capturing stable disease-related spatial covariance pattern. Here, SSM-PCA is innovatively applied to obtain robust ASD-related gray matter volume pattern associated with clinical symptoms. We utilized T1-weighted structural MRI images (sMRI) of 576 subjects (288 ASDs and 288 typically developing (TD) controls) aged 7-29 years from the Autism Brain Imaging Data Exchange II (ABIDE II) dataset. These images were analyzed with SSM-PCA to identify the ASD-related spatial covariance pattern. Subsequently, we investigated the relationship between the pattern and clinical symptoms and verified its robustness. Then, the applicability of the pattern under different age stages were further explored. The results revealed that the ASD-related pattern primarily involves the thalamus, putamen, parahippocampus, orbitofrontal cortex, and cerebellum. The expression of this pattern correlated with Social Response Scale and Social Communication Questionnaire scores. Moreover, the ASD-related pattern was robust for the ABIDE I dataset. Regarding the applicability of the pattern for different age stages, the effect sizes of its expression in ASD were medium in the children and adults, while small in adolescents. This study identified a robust ASD-related pattern based on gray matter volume that is associated with social deficits. Our findings provide new insights into the neuroanatomical mechanisms of ASD and may facilitate its future intervention.

摘要

自闭症谱系障碍(ASD)是一种复杂的神经发育障碍,其潜在的神经解剖学机制仍不清楚。主成分分析的缩放子轮廓模型(SSM-PCA)是一种数据驱动的多变量技术,用于捕捉与疾病相关的稳定空间协方差模式。在此,创新性地应用SSM-PCA来获得与临床症状相关的、稳健的ASD相关灰质体积模式。我们使用了来自自闭症脑成像数据交换II(ABIDE II)数据集的576名7至29岁受试者(288名ASD患者和288名正常发育(TD)对照)的T1加权结构MRI图像(sMRI)。这些图像通过SSM-PCA进行分析,以识别与ASD相关的空间协方差模式。随后,我们研究了该模式与临床症状之间的关系,并验证了其稳健性。然后,进一步探索了该模式在不同年龄阶段的适用性。结果显示,与ASD相关的模式主要涉及丘脑、壳核、海马旁回、眶额皮质和小脑。这种模式的表达与社会反应量表和社会沟通问卷得分相关。此外,与ASD相关的模式在ABIDE I数据集上具有稳健性。关于该模式在不同年龄阶段的适用性,其在ASD中的表达效应大小在儿童和成人中为中等,而在青少年中为小。本研究基于灰质体积确定了一种与社会缺陷相关的、稳健的ASD相关模式。我们的发现为ASD的神经解剖学机制提供了新的见解,并可能促进其未来的干预。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验