Suppr超能文献

通过在微米级硅上化学镀银纳米颗粒制备高性能赝电容复合材料

Development of a high-performance pseudocapacitive composite via electroless deposition of silver nanoparticles on micro-sized silicon.

作者信息

Juyal Sakshi, Mishra Abhilasha, Jain Ankur, Shrivastawa Kriti, Singh Aditya, Dumka Monika, Gill Fateh Singh, Bajaj Mohit, Zaitsev Ievgen

机构信息

Department of Allied Sciences (Physics), Graphic Era (Deemed to be University), Dehradun, 248002, India.

Suresh Gyan Vihar University, Jaipur, India.

出版信息

Sci Rep. 2024 Dec 30;14(1):32103. doi: 10.1038/s41598-024-83808-3.

Abstract

An energy material has been developed using a one-step chemical reduction method, incorporating silver nanoparticles (AgNPs) that encapsulate micro-sized silicon (mSi) flakes. SEM investigation revealed complete encapsulation of silicon flakes by AgNP's dendritic structure, EDX confirmed the deposition of Ag on Si flakes. Raman spectroscopy confirmed the formation of silver and silicon oxides. In a three-cell configuration, the low equivalent series resistance and charge transfer resistance indicated that Ag served as the conductive channel for charge transfer. The CV curves displayed a 1.7 V voltage window attributed to amorphous SiO, which offered a significant specific capacitance of 330.6 F g at a scan rate of 5 mV s. The pseudocapacitive nature of the developed material, in comparison to other Ag-based composites and pseudocapacitive materials, achieved an energy density of 37.83 Wh kg and a power density of 6374 W kg at a current density of 7.5 A g in a three-cell configuration. The nanostructured Ag combined with mSi is suitable as a renewable charge storage material.

摘要

一种能量材料已通过一步化学还原法制备而成,该材料包含包裹着微米级硅(mSi)薄片的银纳米颗粒(AgNP)。扫描电子显微镜(SEM)研究表明,AgNP的树枝状结构完全包裹了硅薄片,能量色散X射线光谱(EDX)证实了Ag在硅薄片上的沉积。拉曼光谱证实了银和二氧化硅的形成。在三电池配置中,低等效串联电阻和电荷转移电阻表明Ag充当了电荷转移的导电通道。循环伏安(CV)曲线显示出归因于非晶态SiO的1.7V电压窗口,在扫描速率为5mV s时提供了330.6F g的显著比电容。与其他银基复合材料和赝电容材料相比,所制备材料的赝电容性质在三电池配置中,在电流密度为7.5A g时实现了37.83Wh kg的能量密度和6374W kg的功率密度。纳米结构的Ag与mSi相结合适合作为可再生电荷存储材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255c/11685726/498ec94a0aa4/41598_2024_83808_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验