Sathish Sivan
Department of Oral Medicine and Radiology, Teerthanker Mahaveer Dental College and Research Centre, Moradabad, Uttar Pradesh, India.
Sci Rep. 2024 Dec 30;14(1):32138. doi: 10.1038/s41598-024-83974-4.
A novel classification system, termed the Sivan classification, was developed to enhance the diagnosis of jaw lesions by utilizing visual volumetric analysis of three-dimensional Cone Beam Computed Tomography (CBCT) images. This classification groups lesions into ten categories, primarily divided into hypovolumetric, hypervolumetric, and normovolumetric groups. To validate this system, 10 raters-comprising 5 general dentists and 5 oral radiology specialists-assessed the CBCT images and diagnosed the lesions using the Sivan classification. Eight raters repeated the process after one month to assess consistency. The overall agreement between raters, quantified using kappa statistics, was 0.82, indicating excellent consistency. Hypervolumetric and normovolumetric lesions demonstrated the highest agreement (kappa 0.84 and 0.82, respectively), while hypovolumetric lesions showed substantial agreement (kappa 0.77). Pairwise interrater agreement ranged from 76 to 93%, with kappa values between 0.75 and 0.87. Intrarater reliability was equally strong, with kappa values between 0.79 and 0.89.These results suggest that the Sivan classification provides a robust and reliable framework for diagnosing jaw lesions using CBCT volumetric analysis, surpassing traditional diagnostic methods in accuracy and consistency.
一种名为西万分类法的新型分类系统被开发出来,旨在通过对三维锥形束计算机断层扫描(CBCT)图像进行视觉容积分析,加强对颌骨病变的诊断。该分类法将病变分为十类,主要分为容积减小组、容积增加组和容积正常组。为验证该系统,由5名普通牙医和5名口腔放射科专家组成的10名评估者对CBCT图像进行评估,并使用西万分类法诊断病变。8名评估者在一个月后重复该过程以评估一致性。使用kappa统计量量化评估者之间的总体一致性为0.82,表明一致性极佳。容积增加组和容积正常组的一致性最高(kappa分别为0.84和0.82),而容积减小组显示出高度一致性(kappa为0.77)。评估者之间的两两一致性范围为76%至93%,kappa值在0.75至0.87之间。评估者内部的可靠性同样很强,kappa值在0.79至0.89之间。这些结果表明,西万分类法为使用CBCT容积分析诊断颌骨病变提供了一个强大且可靠的框架,在准确性和一致性方面超越了传统诊断方法。