Zhao Ziqi, Wu Yizhou, Liu Chang, Li Yingzheng, Gong Chen, Ning Hongxia, Zhang Peili, Li Fei, Sun Licheng, Li Fusheng
State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.
Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, China.
Adv Sci (Weinh). 2025 Feb;12(8):e2413668. doi: 10.1002/advs.202413668. Epub 2024 Dec 30.
Cofactors such as nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) play a crucial role in natural enzyme-catalyzed reactions for the synthesis of chemicals. However, the stoichiometric supply of NADH for artificial synthetic processes is uneconomical. Here, inspired by the process of cofactor NADPH regeneration in photosystem I (PSI), catalyst-modified photocathodes are constructed on the surface of polythiophene-based semiconductors (PTTH) via self-assembly for photoelectrochemical catalytic NADH regeneration. With the assistance of viologen (vi) electron transfer mediators (similar function as Ferredoxin in PSI) linked to the [Rh(Cp)(bpy)] catalyst, the Rh-vi@PTTH photocathode exhibits higher photocurrent density (-665 µA cm) with a high apparent turnover frequency (TOF, 168.4 h) under a relatively positive potential (0.0 V vs RHE). In addition, through holistic functional mimics of the photosystem, a tandem photoelectrochemical cell is constructed by assembling a CoPi@BiVO photoanode (artificial photosystem II, PSII) with the Rh-vi@PTTH photocathode. This system achieves a production rate of 42.5 µm h cm and a TOF of 179.3 h without an externally applied bias for NADH regeneration. The photo-generated NADH is directly employed to assist glutamate dehydrogenase (GDH) in the catalytic conversion of α-ketoglutarate to L-glutamate. This study presents a novel strategic approach for constructing bias-free photoelectrochemical NADH regeneration systems.
诸如烟酰胺腺嘌呤二核苷酸(NADH)及其磷酸化形式(NADPH)等辅因子在化学合成的天然酶催化反应中起着至关重要的作用。然而,为人工合成过程化学计量供应NADH并不经济。在此,受光系统I(PSI)中辅因子NADPH再生过程的启发,通过自组装在基于聚噻吩的半导体(PTTH)表面构建催化剂修饰的光阴极,用于光电化学催化NADH再生。在与[Rh(Cp)(bpy)]催化剂相连的紫精(vi)电子转移介质(功能类似于PSI中的铁氧化还原蛋白)的协助下,Rh-vi@PTTH光阴极在相对正的电位(相对于可逆氢电极0.0 V)下表现出更高的光电流密度(-665 μA cm)和高表观周转频率(TOF,168.4 h⁻¹)。此外,通过对光系统的整体功能模拟,将CoPi@BiVO光阳极(人工光系统II,PSII)与Rh-vi@PTTH光阴极组装在一起构建了一个串联光电化学电池。该系统在无外部施加偏压的情况下实现了42.5 μmol h⁻¹ cm⁻²的产率和179.3 h⁻¹的TOF用于NADH再生。光生NADH直接用于协助谷氨酸脱氢酶(GDH)将α-酮戊二酸催化转化为L-谷氨酸。本研究提出了一种构建无偏压光电化学NADH再生系统的新策略。