Su Yonghua, Ding Cuiling, Zhou Yaqiong, Xu Yi Ning, Liu Peng Fei, Sun Xiaoying, Fan Siwei, Wu Haiyu, Zeng Tiancheng, Peng Haoran, Li Bin
Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
ACS Appl Bio Mater. 2025 Jan 20;8(1):329-340. doi: 10.1021/acsabm.4c01204. Epub 2024 Dec 31.
SARS-CoV-2 is a threat to global public health, which requires the development of safe measures to reduce the spread of this coronavirus. Herein, in this study, we prepared and examined potential antiviral agents based on ZnAl-layered double hydroxide (ZnAl-LDH) materials. ZnAl-LDH-based samples were synthesized via a one-pot low-temperature coprecipitation method, which features an ultrathin structure. The incorporation of trace amounts of Ag induces the formation of ZnO particles on the ZnAl-LDH surface, where both ZnO and Ag enhance UV light absorption. Interestingly, ZnAl-LDH-Ag shows a significantly high anticoronavirus effect upon exposure to the daylight lamp of the operation console and ultraviolet light. Moreover, ZnAl-LDH and ZnAl-LDH-Ag potently blocked the entry of SARS-CoV-2 pseudoparticles to cells. The in vivo biocompatibility experiment has demonstrated that ZnAl-LDH-Ag is a potentially biocompatible and potent anti-SARS-CoV-2 agent for virus prevention. The synergistic interactions between these nanoparticles continuously generate reactive oxygen species (ROS), leading to effective and sustained viral inactivation. This light-sensitive ROS production introduces a photocatalytic inactivation mechanism in antiviral materials. Moreover, unlike conventional antiviral agents that rapidly deplete their active components, the layered structure of this composite enables the controlled long-term release of antiviral radicals, enhancing its durability. ZnAl-LDH-Ag has been expected to be a promising solution for long-lasting antiviral applications.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)对全球公共卫生构成威胁,这就需要制定安全措施以减少这种冠状病毒的传播。在此,在本研究中,我们制备并检测了基于锌铝层状双氢氧化物(ZnAl-LDH)材料的潜在抗病毒剂。基于ZnAl-LDH的样品通过一锅法低温共沉淀法合成,其具有超薄结构。痕量Ag的掺入诱导在ZnAl-LDH表面形成ZnO颗粒,其中ZnO和Ag均增强紫外线吸收。有趣的是,ZnAl-LDH-Ag在暴露于操作控制台的日光灯和紫外光时显示出显著高的抗冠状病毒效果。此外,ZnAl-LDH和ZnAl-LDH-Ag有力地阻断了SARS-CoV-2假病毒颗粒进入细胞。体内生物相容性实验表明,ZnAl-LDH-Ag是一种潜在的生物相容性且有效的抗SARS-CoV-2病毒预防剂。这些纳米颗粒之间的协同相互作用持续产生活性氧(ROS),导致有效的持续病毒灭活。这种光敏感的ROS产生在抗病毒材料中引入了光催化灭活机制。此外,与迅速耗尽其活性成分的传统抗病毒剂不同,这种复合材料的层状结构能够控制抗病毒自由基的长期释放,增强其耐久性。ZnAl-LDH-Ag有望成为持久抗病毒应用的一种有前途的解决方案。