膜信号传导中的高阶瞬态结构与动态连接原理
Higher-order transient structures and the principle of dynamic connectivity in membrane signaling.
作者信息
Zhang Yuxi, MacKinnon Roderick
机构信息
Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065.
HHMI, The Rockefeller University, New York, NY 10065.
出版信息
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2421280121. doi: 10.1073/pnas.2421280121. Epub 2024 Dec 31.
We examine the role of higher-order transient structures (HOTS) in M2R regulation of GIRK channels. Electron microscopic membrane protein location maps show that both proteins form HOTS that exhibit a statistical bias to be near each other. Theoretical calculations and electrophysiological measurements suggest that channel activity is isolated near larger M2R HOTS. By invoking weak interactions that permit transient binding of M2R to M2R and GIRK to GIRK ( interactions) and M2R to GIRK ( interactions), the distribution patterns and electrophysiological properties of HL-1 cells are replicated in a reaction-diffusion simulation. We propose the principle of dynamic connectivity to explain communication between protein components of a membrane signaling pathway. Dynamic connectivity is mediated by weak, transient interactions between proteins. HOTS created by weak interactions, and statistical biases created by weak interactions promoted by the multivalence of HOTS, are the key elements of dynamic connectivity.
我们研究了高阶瞬态结构(HOTS)在M2R对GIRK通道调控中的作用。电子显微镜膜蛋白定位图显示,这两种蛋白均形成了HOTS,且彼此靠近存在统计偏差。理论计算和电生理测量表明,通道活性在较大的M2R HOTS附近被隔离。通过引入允许M2R与M2R以及GIRK与GIRK(相互作用)和M2R与GIRK(相互作用)进行瞬时结合的弱相互作用,HL-1细胞的分布模式和电生理特性在反应扩散模拟中得以重现。我们提出动态连接原理来解释膜信号通路中蛋白质成分之间的通信。动态连接由蛋白质之间的弱瞬态相互作用介导。由弱相互作用产生的HOTS,以及由HOTS的多价性促进的弱相互作用产生的统计偏差,是动态连接的关键要素。