Suppr超能文献

从经过卷积神经网络(CNN)训练的二维图像数据集生成多深度三维计算机生成全息图

Generation of Multiple-Depth 3D Computer-Generated Holograms from 2D-Image-Datasets Trained CNN.

作者信息

Yan Xingpeng, Li Jiaqi, Zhang Yanan, Chang Hebin, Hu Hairong, Jing Tao, Li Hanyu, Zhang Yang, Xue Jinhong, Yu Xunbo, Jiang Xiaoyu

机构信息

Department of Information Communication, Army Academy of Armored Forces, Beijing, 100072, China.

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100080, China.

出版信息

Adv Sci (Weinh). 2025 Feb;12(8):e2408610. doi: 10.1002/advs.202408610. Epub 2024 Dec 31.

Abstract

Generating computer-generated holograms (CGHs) for 3D scenes by learning-based methods can reconstruct arbitrary 3D scenes with higher quality and faster speed. However, the homogenization and difficulty of obtaining 3D high-resolution datasets seriously limit the generalization ability of the model. A novel approach is proposed to train 3D encoding models based on convolutional neural networks (CNNs) using 2D image datasets. This technique produces virtual depth (VD) images with a statistically uniform distribution. This approach employs a CNN trained with the angular spectrum method (ASM) for calculating diffraction fields layer by layer. A fully convolutional neural network architecture for phase-only encoding, which is trained on the DIV2K-VD dataset. Experimental results validate its effectiveness by generating a 4K phase-only hologram within only 0.061 s, yielding high-quality holograms that have an average PSNR of 34.7 dB along with an SSIM of 0.836, offering high quality, economic and time efficiencies compared to traditional methods.

摘要

通过基于学习的方法生成用于3D场景的计算机生成全息图(CGH),可以以更高的质量和更快的速度重建任意3D场景。然而,3D高分辨率数据集获取的同质化和困难严重限制了模型的泛化能力。提出了一种新颖的方法,使用2D图像数据集训练基于卷积神经网络(CNN)的3D编码模型。该技术产生具有统计均匀分布的虚拟深度(VD)图像。此方法采用通过角谱方法(ASM)训练的CNN逐层计算衍射场。一种用于纯相位编码的全卷积神经网络架构,在DIV2K-VD数据集上进行训练。实验结果通过仅在0.061秒内生成4K纯相位全息图验证了其有效性,产生的高质量全息图平均PSNR为34.7 dB,SSIM为0.836,与传统方法相比具有高质量、经济性和时间效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1245/11848602/c4629a0fd17c/ADVS-12-2408610-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验