University of Notre Dame, Department of Electrical Engineering, Notre Dame, Indiana, United States.
J Biomed Opt. 2023 Mar;28(3):036501. doi: 10.1117/1.JBO.28.3.036501. Epub 2023 Mar 14.
Machine learning (ML) models based on deep convolutional neural networks have been used to significantly increase microscopy resolution, speed [signal-to-noise ratio (SNR)], and data interpretation. The bottleneck in developing effective ML systems is often the need to acquire large datasets to train the neural network. We demonstrate how adding a "dense encoder-decoder" (DenseED) block can be used to effectively train a neural network that produces super-resolution (SR) images from conventional microscopy diffraction-limited (DL) images trained using a small dataset [15 fields of view (FOVs)].
The ML helps to retrieve SR information from a DL image when trained with a massive training dataset. The aim of this work is to demonstrate a neural network that estimates SR images from DL images using modifications that enable training with a small dataset.
We employ "DenseED" blocks in existing SR ML network architectures. DenseED blocks use a dense layer that concatenates features from the previous convolutional layer to the next convolutional layer. DenseED blocks in fully convolutional networks (FCNs) estimate the SR images when trained with a small training dataset (15 FOVs) of human cells from the Widefield2SIM dataset and in fluorescent-labeled fixed bovine pulmonary artery endothelial cells samples.
Conventional ML models without DenseED blocks trained on small datasets fail to accurately estimate SR images while models including the DenseED blocks can. The average peak SNR (PSNR) and resolution improvements achieved by networks containing DenseED blocks are and , respectively. We evaluated various configurations of target image generation methods (e.g., experimentally captured a target and computationally generated target) that are used to train FCNs with and without DenseED blocks and showed that including DenseED blocks in simple FCNs outperforms compared to simple FCNs without DenseED blocks.
DenseED blocks in neural networks show accurate extraction of SR images even if the ML model is trained with a small training dataset of 15 FOVs. This approach shows that microscopy applications can use DenseED blocks to train on smaller datasets that are application-specific imaging platforms and there is promise for applying this to other imaging modalities, such as MRI/x-ray, etc.
基于深度卷积神经网络的机器学习 (ML) 模型已被用于显著提高显微镜分辨率、速度 [信号噪声比 (SNR)] 和数据解释。开发有效 ML 系统的瓶颈通常是需要获取大型数据集来训练神经网络。我们展示了如何添加“密集编码器解码器”(DenseED)块,以有效地训练神经网络,该神经网络使用小数据集 [15 个视场 (FOV)] 从传统显微镜衍射受限 (DL) 图像中生成超分辨率 (SR) 图像。
当使用大型训练数据集进行训练时,ML 有助于从 DL 图像中检索 SR 信息。本工作的目的是展示一种神经网络,该网络使用可通过小数据集进行训练的修改,从 DL 图像估计 SR 图像。
我们在现有的 SR ML 网络架构中采用“DenseED”块。DenseED 块使用密集层,该密集层将来自前一个卷积层的特征连接到下一个卷积层。在使用 Widefield2SIM 数据集的人类细胞和荧光标记固定牛肺动脉内皮细胞样本的 15 个 FOV 的小训练数据集训练时,DenseED 块在全卷积网络 (FCN) 中估计 SR 图像。
未使用 DenseED 块的传统 ML 模型在使用小数据集进行训练时无法准确估计 SR 图像,而包含 DenseED 块的模型可以。包含 DenseED 块的网络的平均峰值 SNR(PSNR)和分辨率提高分别为 和 。我们评估了各种目标图像生成方法(例如,实验捕获目标和计算生成目标)的配置,这些方法用于训练带有和不带有 DenseED 块的 FCN,并表明与不带有 DenseED 块的简单 FCN 相比,在简单 FCN 中包含 DenseED 块的性能更好。
即使 ML 模型使用 15 个 FOV 的小训练数据集进行训练,神经网络中的 DenseED 块也可以准确提取 SR 图像。该方法表明显微镜应用可以使用 DenseED 块在特定于应用的成像平台上训练更小的数据集,并且有望将其应用于其他成像模式,例如 MRI/x 射线等。