Coppola Christian, Sigloch Maximilian, Hoermann Romed, Schlumberger Michael, Schuster Philipp, Schmoelz Werner, Mayr Raul
Department of Orthopedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria.
Institute for Clinical Anatomy, Medical University of Innsbruck, Innsbruck, Austria.
Am J Sports Med. 2025 Jan;53(1):147-153. doi: 10.1177/03635465241294072.
It is still unknown if the double-femoral tunnel technique (Arciero [ARC]) provides better stability as compared with the single-femoral tunnel technique (modified Larson [LAR]) in posterolateral corner reconstruction. The ideal angle of fixation of the popliteofibular strand in ARC is also unknown.
The ARC provides greater external rotation (ER) stability than the LAR (hypothesis 1); there is no difference in varus rotation (VR) stability between LAR and ARC (hypothesis 2); and femoral fixation of the popliteofibular strand at 60° during the ARC leads to greater ER stability than fixation at 30° or 90° of knee flexion (hypothesis 3).
Controlled laboratory study.
Eight fresh-frozen human knees were tested in a knee test bench in 4 states: native, posterolateral deficiency, LAR, and ARC. With the ARC, the popliteofibular strand was fixed at 30°, 60°, and 90° (ARC30, ARC60, ARC90). The order of testing (LAR/ARC) was randomized. A tibial ER and VR torque of 5 N·m was applied at 0°, 30°, 60°, and 90°. Rotation degrees were captured using an ultrasound-based analysis system. Wilcoxon signed rank tests were used to assess statistical significance between paired groups in different states.
The ARC and LAR significantly improved VR and ER stability at all flexion angles in comparison with posterolateral deficiency ( < .05). At 60° and 90°, ARC30 showed significantly greater ER stability in comparison with the LAR (mean ± SD; ARC30 vs LAR at 60°, 21.2°± 5.1° vs 15.4°± 5.6° [ < .05]; ARC30 vs LAR at 90°, 23.7°± 5.6° vs 16.8°± 6.3° [ < .05]). At 90°, the LAR showed significantly greater VR instability in comparison with the native state (3.5°± 1.5° vs 2.5°± 1.0°; = .012), and ARC30 was not significantly different from the native state with respect to VR (2.9°± 1.5° vs 2.5°± 1.0°; = .327). No significant differences in ER and VR were found among ARC30, ARC60, and ARC90 at any flexion angle (≥ .05).
The ARC technique provided greater tibial ER stability in comparison with the LAR at higher flexion angles (hypothesis 1 accepted). There were no differences between LAR and ARC in restoring VR stability, except at 90° (hypothesis 2 partly accepted). Different femoral flexion angles for fixation of the popliteofibular strand during the ARC did not show any significant differences in relation to knee stability (hypothesis 3 rejected).
Posterolateral corner reconstruction using the ARC technique provides greater ER stability at higher flexion angles than the modified LAR technique.
在重建后外侧角时,与单股股骨隧道技术(改良拉森技术[LAR])相比,双股股骨隧道技术(阿奇罗技术[ARC])是否能提供更好的稳定性尚不清楚。ARC技术中腘腓束的理想固定角度也未知。
ARC技术比LAR技术提供更大的外旋(ER)稳定性(假设1);LAR技术和ARC技术在内翻旋转(VR)稳定性上没有差异(假设2);在ARC技术中,腘腓束在膝关节屈曲60°时进行股骨固定比在30°或90°时固定能带来更大的ER稳定性(假设3)。
对照实验室研究。
在膝关节试验台上对8个新鲜冷冻的人体膝关节在4种状态下进行测试:正常、后外侧缺损、LAR技术、ARC技术。采用ARC技术时,腘腓束分别固定在30°、60°和90°(ARC30、ARC60、ARC90)。测试顺序(LAR/ARC)随机安排。在0°、30°、60°和90°时施加5 N·m的胫骨ER和VR扭矩。使用基于超声的分析系统记录旋转度数。采用威尔科克森符号秩检验评估不同状态下配对组之间的统计学显著性。
与后外侧缺损相比,ARC技术和LAR技术在所有屈曲角度下均显著提高了VR和ER稳定性(P <.05)。在60°和90°时,ARC30与LAR相比表现出显著更大的ER稳定性(均值±标准差;60°时ARC30与LAR相比,21.2°±5.1°对15.4°±5.6°[P <.05];90°时ARC30与LAR相比,23.7°±5.6°对16.8°±6.3°[P <.05])。在90°时,LAR与正常状态相比表现出显著更大的VR不稳定性(3.5°±1.5°对2.5°±1.0°;P =.012),而ARC在VR方面与正常状态无显著差异(2.9°±1.5°对2.5°±1.0°;P =.327)。在任何屈曲角度下,ARC30、ARC60和ARC90之间在ER和VR方面均未发现显著差异(P≥.05)。
与LAR技术相比,ARC技术在更高屈曲角度下提供了更大的胫骨ER稳定性(假设1被接受)。除90°外,LAR技术和ARC技术在恢复VR稳定性方面没有差异(假设2部分被接受)。ARC技术中腘腓束固定的不同股骨屈曲角度在膝关节稳定性方面未显示出任何显著差异(假设3被拒绝)。
与改良LAR技术相比,采用ARC技术进行后外侧角重建在更高屈曲角度下提供了更大的ER稳定性。