Suppr超能文献

分析高血压患者的血脂谱和血脂异常患病率:一项来自基层社区卫生机构的横断面研究。

Analyzing lipid profiles and dyslipidemia prevalence in hypertensive patients: a cross-sectional study from primary community health institutions.

作者信息

Wang Wenxin, Li Xinmin, Lv Deliang, Wu Xiaobing, Xie Fengzhu, Xie Wei, Wang Jinxiao, Zhao Zhiguang

机构信息

School of Public Health/Institute of Local Government Development, Shantou University, Shan-Tou, China.

School of Public Health, Shantou University, Shan-Tou, China.

出版信息

Front Med (Lausanne). 2024 Dec 17;11:1425414. doi: 10.3389/fmed.2024.1425414. eCollection 2024.

Abstract

BACKGROUND

A significant proportion of hypertensive patients also suffer from comorbid dyslipidemia, which critically influences their treatment outcomes and overall prognosis. Given its implications, the lipid profiles of hypertensive individuals warrant increased attention for more effective clinical management.

METHODS

We analyzed data from 92,443 hypertensive patients registered at primary community health institutions in 2021. Employing a cross-sectional study design, we assessed the distribution of lipid levels and the prevalence of various dyslipidemia subtypes. Stepwise forward logistic regression was used to identify factors associated with dyslipidemia, adjusting for gender, age, body size, and other relevant characteristics.

RESULTS

According to the 2023 Chinese Guidelines for the Management of Lipids, the overall prevalence of dyslipidemia was 37.5%. Subtype analysis revealed prevalence of high total cholesterol (TC) at 11.2%, high triglycerides (TG) at 16.0%, low high-density lipoprotein cholesterol (HDL-C) at 16.0%, and high low-density lipoprotein cholesterol (LDL-C) at 10.2%. TG abnormalities were more common among males (16.8%), whereas TC abnormalities predominated in females (14.4%). Notably, hypertensive patients with diabetes had higher levels of TG compared to non-diabetics ( = 0.009). Those with stroke and liver disease comorbidities exhibited lower TG levels than their counterparts ( = 0.018 and  < 0.001, respectively). Additionally, HDL-C levels were significantly lower in hypertensives with diabetes, coronary artery disease, and central obesity ( < 0.001,  = 0.026, p < 0.001, respectively). Regression analysis indicated that dyslipidemia prevalence correlates significantly with gender, age, diabetes, coronary heart disease, stroke, family history of hypertension, body mass index (BMI), central obesity, frequency of physical activity, smoking status, regular alcohol consumption, and abdominal ultrasound findings.

CONCLUSION

Our study underscores the necessity of rigorous lipid monitoring and analysis of dyslipidemia-influencing factors for the development of effective health management strategies within the community. There is a critical need to examine lipid profiles comprehensively and implement targeted therapeutic interventions aimed at managing hyperlipidemia, a modifiable risk factor for cardiovascular disease.

摘要

背景

相当一部分高血压患者同时患有合并血脂异常,这严重影响他们的治疗效果和总体预后。鉴于其影响,高血压患者的血脂谱值得更多关注,以便进行更有效的临床管理。

方法

我们分析了2021年在基层社区卫生机构登记的92443例高血压患者的数据。采用横断面研究设计,我们评估了血脂水平的分布情况以及各种血脂异常亚型的患病率。采用逐步向前逻辑回归分析来确定与血脂异常相关的因素,并对性别、年龄、体型和其他相关特征进行了校正。

结果

根据《2023年中国血脂管理指南》,血脂异常的总体患病率为37.5%。亚型分析显示,总胆固醇(TC)升高的患病率为11.2%,甘油三酯(TG)升高的患病率为16.0%,高密度脂蛋白胆固醇(HDL-C)降低的患病率为16.0%,低密度脂蛋白胆固醇(LDL-C)升高的患病率为10.2%。TG异常在男性中更为常见(16.8%),而TC异常在女性中占主导(14.4%)。值得注意的是,患有糖尿病的高血压患者的TG水平高于非糖尿病患者( = 0.009)。患有中风和肝病合并症的患者的TG水平低于相应患者(分别为 = 0.018和 < 0.001)。此外,患有糖尿病、冠状动脉疾病和中心性肥胖的高血压患者的HDL-C水平显著较低(分别为 < 0.001、 = 0.026、p < 0.001)。回归分析表明,血脂异常患病率与性别、年龄、糖尿病、冠心病、中风、高血压家族史、体重指数(BMI)、中心性肥胖、体育活动频率、吸烟状况、规律饮酒以及腹部超声检查结果显著相关。

结论

我们的研究强调了在社区内开展严格的血脂监测以及分析影响血脂异常的因素对于制定有效的健康管理策略的必要性。迫切需要全面检查血脂谱并实施有针对性的治疗干预措施,以管理高脂血症,这是心血管疾病的一个可改变的危险因素。

相似文献

2
Prevalence of dyslipidemia and associated risk factors among Turkish adults: Trabzon lipid study.
Endocrine. 2008 Aug-Dec;34(1-3):36-51. doi: 10.1007/s12020-008-9100-z. Epub 2008 Nov 12.
3
Association of Lipid Levels With the Prevalence of Hypertension in Chinese Women: A Cross-Sectional Study Based on 32 Health Check Centers.
Front Endocrinol (Lausanne). 2022 Jul 7;13:904237. doi: 10.3389/fendo.2022.904237. eCollection 2022.
4
Prevalence and factors associated with dyslipidemia in Bangladeshi adults.
PLoS One. 2023 Jan 20;18(1):e0280672. doi: 10.1371/journal.pone.0280672. eCollection 2023.
7
The effects of ART on the dynamics of lipid profiles in Chinese Han HIV-infected patients: comparison between NRTI/NNRTI and NRTI/INSTI.
Front Public Health. 2023 Apr 27;11:1161503. doi: 10.3389/fpubh.2023.1161503. eCollection 2023.
8
Relationship Between Lipid Profiles and Hypertension: A Cross-Sectional Study of 62,957 Chinese Adult Males.
Front Public Health. 2022 May 18;10:895499. doi: 10.3389/fpubh.2022.895499. eCollection 2022.
9
The High Prevalence of Low HDL-Cholesterol Levels and Dyslipidemia in Rural Populations in Northwestern China.
PLoS One. 2015 Dec 7;10(12):e0144104. doi: 10.1371/journal.pone.0144104. eCollection 2015.

引用本文的文献

本文引用的文献

1
Nutrition interventions for adults with dyslipidemia: A Clinical Perspective from the National Lipid Association.
J Clin Lipidol. 2023 Jul-Aug;17(4):428-451. doi: 10.1016/j.jacl.2023.05.099. Epub 2023 Jun 2.
3
Alcohol intake and dyslipidemia in male patients with hypertension and diabetes enrolled in a China multicenter registry.
J Clin Hypertens (Greenwich). 2023 Feb;25(2):183-190. doi: 10.1111/jch.14638. Epub 2023 Jan 19.
4
Patterns of Dyslipidemia Among Acute Coronary Syndrome (ACS) Patients at a Tertiary Care Hospital in Lahore, Pakistan.
Cureus. 2022 Dec 10;14(12):e32378. doi: 10.7759/cureus.32378. eCollection 2022 Dec.
7
Distribution of lipid levels and prevalence of hyperlipidemia: data from the NHANES 2007-2018.
Lipids Health Dis. 2022 Oct 28;21(1):111. doi: 10.1186/s12944-022-01721-y.
8
Hypertension and Dyslipidemia Combined Therapeutic Approaches.
High Blood Press Cardiovasc Prev. 2022 May;29(3):221-230. doi: 10.1007/s40292-022-00507-8. Epub 2022 Mar 25.
9
Prevalence of Dyslipidemia and Availability of Lipid-Lowering Medications Among Primary Health Care Settings in China.
JAMA Netw Open. 2021 Sep 1;4(9):e2127573. doi: 10.1001/jamanetworkopen.2021.27573.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验