Suppr超能文献

心房颤动相关基因的网络与通路分析

A Network and Pathway Analysis of Genes Associated With Atrial Fibrillation.

作者信息

Zeng Mengying, Yang Xian, Chen Yunhao, Fan Jinqi, Cao Li, Wang Menghao, Xiao Peilin, Ling Zhiyu, Yin Yuehui, Chen Yunlin

机构信息

Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Chongqing Key Laboratory of Cardiac Electrophysiology, Chongqing, China.

出版信息

Cardiovasc Ther. 2024 Oct 5;2024:7054039. doi: 10.1155/2024/7054039. eCollection 2024.

Abstract

Atrial fibrillation (AF) is affected by both environmental and genetic factors. Previous genetic association studies, especially genome-wide association studies, revealed a large group of AF-associated genes. However, little is known about the functions and interactions of these genes. Moreover, established genetic variants of AF contribute modestly to AF variance, implying that numerous additional AF-associated genetic variations need to be identified. Hence, a systematic network and pathway analysis is needed. We retrieved all AF-associated genes from genetic association studies in various databases and performed integrative analyses including pathway enrichment analysis, pathway crosstalk analysis, network analysis, and microarray meta-analysis. We collected 254 AF-associated genes from genetic association studies in various databases. Pathway enrichment analysis revealed the top biological pathways that were enriched in the AF-associated genes related to cardiac electromechanical activity. Pathway crosstalk analysis showed that numerous neuro-endocrine-immune pathways connected AF with various diseases including cancers, inflammatory diseases, and cardiovascular diseases. Furthermore, an AF-specific subnetwork was constructed with the prize-collecting Steiner forest algorithm based on the AF-associated genes, and 24 novel genes that were potentially associated with AF were inferred by the subnetwork. In the microarray meta-analysis, six of the 24 novel genes (, , , , , and ) were expressed differentially in patients with AF and sinus rhythm. AF is not only an isolated disease with abnormal electrophysiological activity but might also share a common genetic basis and biological process with tumors and inflammatory diseases as well as cardiovascular diseases. Moreover, the six novel genes inferred from network analysis might help detect the missing AF risk loci.

摘要

心房颤动(AF)受环境和遗传因素的影响。以往的遗传关联研究,尤其是全基因组关联研究,揭示了一大批与AF相关的基因。然而,对于这些基因的功能和相互作用知之甚少。此外,已确定的AF基因变异对AF变异的贡献不大,这意味着需要识别大量其他与AF相关的遗传变异。因此,需要进行系统的网络和通路分析。我们从各种数据库中的遗传关联研究中检索了所有与AF相关的基因,并进行了综合分析,包括通路富集分析、通路串扰分析、网络分析和微阵列荟萃分析。我们从各种数据库中的遗传关联研究中收集了254个与AF相关的基因。通路富集分析揭示了与心脏机电活动相关的AF相关基因中富集的顶级生物学通路。通路串扰分析表明,许多神经-内分泌-免疫通路将AF与包括癌症、炎症性疾病和心血管疾病在内的各种疾病联系起来。此外,基于与AF相关的基因,使用收集奖品的斯坦纳森林算法构建了一个AF特异性子网,并通过该子网推断出24个可能与AF相关的新基因。在微阵列荟萃分析中,24个新基因中的6个(、、、、和)在AF患者和窦性心律患者中表达存在差异。AF不仅是一种具有异常电生理活动的孤立疾病,还可能与肿瘤、炎症性疾病以及心血管疾病共享共同的遗传基础和生物学过程。此外,从网络分析中推断出的6个新基因可能有助于检测遗漏的AF风险位点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/726f/11470814/df7df3acf90f/CDTP2024-7054039.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验