Tsai Hsieh-Fu, Shen Amy Q
Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan and Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Keelung City 204, Taiwan.
Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
Biomicrofluidics. 2024 Dec 27;18(6):064106. doi: 10.1063/5.0228901. eCollection 2024 Dec.
Glioblastoma multiforme, the most common type of highly aggressive primary brain tumor, is influenced by complex molecular signaling pathways, where microRNAs (miRNAs) play a critical regulatory role. Originating from glial cells, glioblastoma cells are affected by the physiological direct current electric field (dcEF) in the central nervous system. While dcEF has been shown to affect glioblastoma migration (electrotaxis), the specific impact on glioblastoma intercellular communication and miRNA expression in glioblastoma cells and their exosomes remains unclear. This study aims to fill this gap by investigating the differential expression of microRNAs in glioblastoma cells and exosomes under dcEF stimulation. We have developed a novel, reversibly sealed dcEF stimulation bioreactor that ensures uniform dcEF stimulation across a large cell culture area, specifically targeting glioblastoma cells and primary human astrocytes. Using microarray analysis, we examined differential miRNA profiles in both cellular and exosomal RNAs. Our study identified shared molecular targets and pathways affected by dcEF stimulation. Our findings reveal significant changes in miRNA expression due to dcEF stimulation, with specific miRNAs, such as hsa-miR-4440 being up-regulated and hsa-miR-3201 and hsa-mir-548g being down-regulated. Future research will focus on elucidating the molecular mechanisms of these miRNAs and their potential as diagnostic biomarkers. The developed platform offers high-quality dcEF stimulation and rapid sample recovery, with potential applications in tissue engineering and multi-omics molecular analysis.
多形性胶质母细胞瘤是最常见的高度侵袭性原发性脑肿瘤类型,受复杂的分子信号通路影响,其中微小RNA(miRNA)发挥着关键的调节作用。胶质母细胞瘤细胞起源于神经胶质细胞,受中枢神经系统中的生理性直流电场(dcEF)影响。虽然已证明dcEF会影响胶质母细胞瘤的迁移(电趋化作用),但其对胶质母细胞瘤细胞间通讯以及胶质母细胞瘤细胞及其外泌体中miRNA表达的具体影响仍不清楚。本研究旨在通过研究dcEF刺激下胶质母细胞瘤细胞和外泌体中微小RNA的差异表达来填补这一空白。我们开发了一种新型的、可逆转密封的dcEF刺激生物反应器,可确保在大细胞培养区域实现均匀的dcEF刺激,特别针对胶质母细胞瘤细胞和原代人星形胶质细胞。使用微阵列分析,我们检测了细胞和外泌体RNA中的差异miRNA谱。我们的研究确定了受dcEF刺激影响的共同分子靶点和途径。我们的研究结果显示,dcEF刺激导致miRNA表达发生显著变化,特定的miRNA,如hsa-miR-4440上调,hsa-miR-3201和hsa-mir-548g下调。未来的研究将集中于阐明这些miRNA的分子机制及其作为诊断生物标志物的潜力。所开发的平台提供高质量的dcEF刺激和快速的样品回收,在组织工程和多组学分子分析中具有潜在应用价值。