Wang Ji-Xiang, Wang Hongmei, Lai Huang, Liu Frank X, Cui Binbin, Yu Wei, Mao Yufeng, Yang Mo, Yao Shuhuai
Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, P. R. China.
Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Hebei, 054000, China.
Adv Sci (Weinh). 2025 Feb;12(8):e2413146. doi: 10.1002/advs.202413146. Epub 2025 Jan 1.
Microfluidic droplets, with their unique properties and broad applications, are essential in in chemical, biological, and materials synthesis research. Despite the flourishing studies on artificial intelligence-accelerated microfluidics, most research efforts have focused on the upstream design phase of microfluidic systems. Generating user-desired microfluidic droplets still remains laborious, inefficient, and time-consuming. To address the long-standing challenges associated with the accurate and efficient identification, sorting, and analysis of the morphology and generation rate of single and double emulsion droplets, a novel machine vision approach utilizing the deformable detection transformer (DETR) algorithm is proposed. This method enables rapid and precise detection (detection relative error < 4% and precision > 94%) across various scales and scenarios, including real-world and simulated environments. Microfluidic droplets identification and analysis (MDIA), a web-based tool powered by Deformable DETR, which supports transfer learning to enhance accuracy in specific user scenarios is developed. MDIA characterizes droplets by diameter, number, frequency, and other parameters. As more training data are added by other users, MDIA's capability and universality expand, contributing to a comprehensive database for droplet microfluidics. The work highlights the potential of artificial intelligence in advancing microfluidic droplet regulation, fabrication, label-free sorting, and analysis, accelerating biochemical sciences and materials synthesis engineering.
微流控液滴具有独特的性质和广泛的应用,在化学、生物和材料合成研究中至关重要。尽管关于人工智能加速微流控的研究蓬勃发展,但大多数研究工作都集中在微流控系统的上游设计阶段。生成用户所需的微流控液滴仍然费力、低效且耗时。为了解决与单乳液和双乳液液滴的形态和生成速率的准确高效识别、分类和分析相关的长期挑战,提出了一种利用可变形检测变压器(DETR)算法的新型机器视觉方法。该方法能够在各种尺度和场景下,包括真实世界和模拟环境中,实现快速精确的检测(检测相对误差<4%,精度>94%)。开发了微流控液滴识别与分析(MDIA),这是一个由可变形DETR驱动的基于网络的工具,支持迁移学习以提高特定用户场景下的准确性。MDIA通过直径、数量、频率和其他参数来表征液滴。随着其他用户添加更多的训练数据,MDIA的能力和通用性不断扩展,有助于建立一个全面的液滴微流控数据库。这项工作突出了人工智能在推进微流控液滴调控、制造、无标记分类和分析方面的潜力,加速了生化科学和材料合成工程的发展。