Suppr超能文献

利用深度学习在苏木精-伊红染色的卵巢癌切片上预测PARP抑制剂的疗效。

Predicting benefit from PARP inhibitors using deep learning on H&E-stained ovarian cancer slides.

作者信息

Marmé Frederik, Krieghoff-Henning Eva I, Kiehl Lennard, Wies Christoph, Hauke Jan, Hahnen Eric, Harter Philipp, Schouten Philip C, Brodkorb Tobias, Kayali Mohamad, Heitz Florian, Zamagni Claudio, González-Martin Antonio, Treilleux Isabelle, Kommoss Stefan, Prieske Katharina, Gaiser Timo, Fröhling Stefan, Ray-Coquard Isabelle, Pujade-Lauraine Eric, Brinker Titus J

机构信息

University Hospital Mannheim, Department of Obstetrics and Gynaecology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany and DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.

Division of Digital Prevention, Diagnostics and Therapy Guidance, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

Eur J Cancer. 2025 Feb 5;216:115199. doi: 10.1016/j.ejca.2024.115199. Epub 2024 Dec 26.

Abstract

PURPOSE

Ovarian cancer patients with a Homologous Recombination Deficiency (HRD) often benefit from polyadenosine diphosphate-ribose polymerase (PARP) inhibitor maintenance therapy after response to platinum-based chemotherapy. HR status is currently analyzed via complex molecular tests. Predicting benefit from PARP inhibitors directly on histological whole slide images (WSIs) could be a fast and cheap alternative.

PATIENTS AND METHODS

We trained a Deep Learning (DL) model on H&E stained WSIs with "shrunken centroid" (SC) based HRD ground truth using the AGO-TR1 cohort (n = 208: 108 training, 100 test) and tested its ability to predict HRD as evaluated by the Myriad classifier and the benefit from olaparib in the PAOLA-1 cohort (n = 447) in a blinded manner.

RESULTS

In contrast to the HRD prediction AUROC of 72 % on hold-out, our model only yielded an AUROC of 57 % external. Kaplan-Meier analysis showed that progression free survival (PFS) in the PARP inhibitor treated PAOLA-1 patients was significantly improved in the HRD positive group as defined by our model, but not in the HRD negative group. PFS improvement in PARP inhibitor-treated patients was substantially longer in our HRD positive group, hinting at a biologically meaningful prediction of benefit from PARP inhibitors.

CONCLUSION

Together, our results indicate that it might be possible to generate a predictor of benefit from PARP inhibitors based on the DL-mediated analysis of WSIs. However, further studies with larger cohorts and further methodological improvements will be necessary to generate a predictor with clinically useful accuracy across independent patient cohorts.

摘要

目的

同源重组缺陷(HRD)的卵巢癌患者在对铂类化疗产生反应后,通常可从聚腺苷二磷酸 - 核糖聚合酶(PARP)抑制剂维持治疗中获益。HR状态目前通过复杂的分子检测进行分析。直接在组织学全切片图像(WSIs)上预测PARP抑制剂的获益可能是一种快速且廉价的替代方法。

患者与方法

我们使用AGO - TR1队列(n = 208:108例用于训练,100例用于测试)在苏木精和伊红(H&E)染色的WSIs上训练了一个基于“收缩质心”(SC)的HRD真实情况的深度学习(DL)模型,并以盲法测试其预测HRD的能力,该能力通过Myriad分类器评估,以及在PAOLA - 1队列(n = 447)中预测奥拉帕尼获益的能力。

结果

与在保留数据上72%的HRD预测曲线下面积(AUROC)相比,我们的模型外部测试仅产生了57%的AUROC。Kaplan - Meier分析表明,在我们模型定义的HRD阳性组中,接受PARP抑制剂治疗的PAOLA - 1患者的无进展生存期(PFS)显著改善,但在HRD阴性组中未改善。在我们的HRD阳性组中,接受PARP抑制剂治疗的患者的PFS改善显著更长,这暗示了对PARP抑制剂获益的生物学意义上的预测。

结论

总之,我们的结果表明,基于WSIs的DL介导分析有可能生成PARP抑制剂获益的预测指标。然而,需要更大队列的进一步研究和进一步的方法改进,以生成在独立患者队列中具有临床有用准确性的预测指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验