Anis Mohammad, Li Sixu, Geedipally Srinivas R, Zhou Yang, Lord Dominique
Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
Center for Transportation Safety, Texas A&M Transportation Institute, 111 RELLIS Parkway Bryan, TX 77807, USA.
Accid Anal Prev. 2025 Mar;211:107880. doi: 10.1016/j.aap.2024.107880. Epub 2024 Dec 31.
Near-miss traffic risk estimation using Extreme Value Theory (EVT) models within a real-time framework offers a promising alternative to traditional historical crash-based methods. However, current approaches often lack comprehensive analysis that integrates diverse roadway geometries, crash patterns, and two-dimensional (2D) vehicle dynamics, limiting both their accuracy and generalizability. This study addresses these gaps by employing a high-fidelity, 2D time-to-collision (TTC) near-miss indicator derived from autonomous vehicle (AV) sensor data. The proposed framework uses univariate Generalized Extreme Value (UGEV) distribution models applied to a subset of the Waymo motion dataset across six arterial networks in San Francisco, Phoenix, and Los Angeles. Extreme events are identified through the Block Maxima (BM) sampling-based approach from each conflicting pair, with 20s block sizes to account for the scarcity of samples in short-duration traffic segments. The framework also incorporates conflicting vehicle dynamics (e.g., speed, acceleration, and deceleration) as covariates within a non-stationary hierarchical Bayesian structure with random parameters (HBSRP) UGEV models, allowing for the effective management of vehicle spatial, temporal, and behavioral heterogeneity. Results show that HBSRP-UGEV models outperform other approaches, with a 6.43-10.56% decrease in DIC, especially for near-miss events in short-duration traffic segments. The inclusion of dynamic vehicle behaviors and random effects substantially enhances the model's capability to estimate real-time traffic risks. This generalized real-time EVT model bridges the gap between active and passive safety measures, offering a precise and adaptable tool for network-level traffic safety analysis.
在实时框架内使用极值理论(EVT)模型进行近碰撞交通风险估计,为传统的基于历史碰撞的方法提供了一种有前景的替代方案。然而,当前的方法往往缺乏综合分析,没有整合不同的道路几何形状、碰撞模式和二维(2D)车辆动力学,限制了其准确性和通用性。本研究通过采用从自动驾驶车辆(AV)传感器数据得出的高保真二维碰撞时间(TTC)近碰撞指标来解决这些差距。所提出的框架使用单变量广义极值(UGEV)分布模型,应用于旧金山、凤凰城和洛杉矶六个干线网络的Waymo运动数据集的一个子集。通过基于块极大值(BM)采样的方法从每个冲突对中识别极端事件,块大小为20秒,以考虑短持续时间交通段中样本的稀缺性。该框架还将冲突车辆动力学(如速度、加速度和减速度)作为协变量纳入具有随机参数的非平稳分层贝叶斯结构(HBSRP)UGEV模型中,从而有效管理车辆的空间、时间和行为异质性。结果表明,HBSRP-UGEV模型优于其他方法,DIC降低了6.43 - 10.56%,特别是对于短持续时间交通段中的近碰撞事件。纳入动态车辆行为和随机效应显著增强了模型估计实时交通风险的能力。这种广义的实时EVT模型弥合了主动和被动安全措施之间的差距,为网络级交通安全分析提供了一种精确且适应性强的工具。