Suppr超能文献

用于循环肿瘤细胞富集的流动富集靶向捕获哈尔巴赫(FETCH)磁分离系统中的二氧化硅包覆磁性纳米珠。

Silica-coated magnetic nanobeads in a flow enrichment target capture Halbach (FETCH) magnetic separation system for circulating tumor cell enrichment.

作者信息

Liu Peng, He Sitian, Mentink Anouk, Hart Pieter, Wu Yongjun, Terstappen Leon W M M, Jonkheijm Pascal, Stevens Michiel

机构信息

Department of Medical Cell Biophysics, TechMed Center, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.

Laboratory of Biointerface Chemistry, Department of Molecules and Materials, TechMed Centre, University of Twente, Enschede, The Netherlands.

出版信息

FEBS Lett. 2025 Mar;599(5):724-738. doi: 10.1002/1873-3468.15094. Epub 2025 Jan 1.

Abstract

Detecting circulating tumor cells (CTCs) is challenging due to their low presence and heterogeneity. Traditional methods using EpCAM-based separation struggle with CTCs that have undergone epithelial-mesenchymal transition, as this results in lower EpCAM expression. This study presents the use of silica-coated magnetic nanobeads functionalized with streptavidin for CTC capture. Using the FETCH magnetic separation system, we validated the capture efficiency of our beads on tumor cells with varying EpCAM expression. Our beads showed superior capture rates for LNCaP (97%), PC3-9 (91%), PC3 (23%), A549 (22%), and T24 (8%) cells compared to commercial MojoSort™ beads. Despite slightly higher nonspecific binding than CellSearch, our beads demonstrated improved sensitivity for EpCAMlow cells, suggesting they have promise for enhanced CTC capture.

摘要

由于循环肿瘤细胞(CTC)数量稀少且具有异质性,对其进行检测颇具挑战。传统的基于上皮细胞黏附分子(EpCAM)分离的方法,对于经历了上皮-间质转化的CTC效果不佳,因为这会导致EpCAM表达降低。本研究展示了使用链霉亲和素功能化的二氧化硅包覆磁性纳米珠来捕获CTC。利用FETCH磁分离系统,我们验证了我们的纳米珠对不同EpCAM表达的肿瘤细胞的捕获效率。与商业化的MojoSort™纳米珠相比,我们的纳米珠对LNCaP(97%)、PC3-9(91%)、PC3(23%)、A549(22%)和T24(8%)细胞显示出更高的捕获率。尽管我们的纳米珠非特异性结合略高于CellSearch,但对EpCAM低表达细胞表现出更高的敏感性,表明它们在增强CTC捕获方面具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29d6/11891416/f17b5c53c6ff/FEB2-599-724-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验