Suppr超能文献

固定在多尺度支撑结构上的碳酸酐酶介导的CO捕集的传质-反应建模

Mass Transfer-Reaction Modeling of CO Capture Mediated by Immobilized Carbonic Anhydrase Enzyme on Multiscale Supporting Structures.

作者信息

Shen Yao, Shao Peijing, Zhao Jingkai, Lu Yongqi, Zhang Shihan

机构信息

Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.

College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.

出版信息

Environ Sci Technol. 2025 Feb 4;59(4):1995-2005. doi: 10.1021/acs.est.4c09673. Epub 2025 Jan 1.

Abstract

Immobilized carbonic anhydrase (CA) enzyme enhances CO absorption in potassium carbonate (PC) solutions, offering an attractive alternative to amine-based processes for postcombustion carbon capture. In this work, the cross-scale models of mass transfer coupled with absorption reactions were developed to evaluate the structural impacts of different enzyme immobilization supporting materials, including nonporous nanoparticle carriers (nano scale), porous microparticle carriers (micro scale), and fixed packing structures (macro scale), on the rate enhancement effect of the immobilized CA. Increasing enzyme activity was demonstrated to be an effective approach to promoting the CO absorption rate; however, there was an upper limit due to the limitation of CO diffusion in the liquid phase, either adjacent to the gas-liquid interface or the liquid-solid interface. The size of particle carriers is another critical factor affecting the CO absorption rate. Only nanoscale particle carriers could directly enter the region within the liquid film of mass transfer, thus providing effective enzymatic enhancement. When the particle size was reduced to below 0.35 μm, the PC promoted with the immobilized CA outperformed the benchmark monoethanolamine solution. The solid-side mass transfer resistance became dominant as the particle size decreased. Modeling results also showed that using stagnant packing materials in a fixed bed as a supporting structure for CA immobilization would be impractical for accelerating CO absorption.

摘要

固定化碳酸酐酶(CA)可增强碳酸钾(PC)溶液对CO的吸收,为燃烧后碳捕集的胺基工艺提供了一种有吸引力的替代方案。在这项工作中,建立了传质与吸收反应耦合的跨尺度模型,以评估不同酶固定化载体材料(包括无孔纳米颗粒载体(纳米尺度)、多孔微粒载体(微米尺度)和固定填料结构(宏观尺度))对固定化CA的速率增强效果的结构影响。提高酶活性被证明是提高CO吸收速率的有效方法;然而,由于在气液界面或液固界面附近的液相中CO扩散的限制,存在一个上限。颗粒载体的尺寸是影响CO吸收速率的另一个关键因素。只有纳米级颗粒载体才能直接进入传质液膜内的区域,从而提供有效的酶促增强作用。当粒径减小到0.35μm以下时,固定化CA促进的PC性能优于基准单乙醇胺溶液。随着粒径减小,固相传质阻力占主导地位。模拟结果还表明,在固定床中使用静态填料作为CA固定化的支撑结构对于加速CO吸收是不切实际的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验