Suppr超能文献

基于生物pH值摆动的矿物碳酸化用于去除大气中二氧化碳的建模与可行性评估

Modeling and Feasibility Assessment of Mineral Carbonation Based on Biological pH Swing for Atmospheric CO Removal.

作者信息

Zhang Yukun, Long Spencer, Duret Manon T, Bullock Liam A, Lam Phyllis, Yang Aidong

机构信息

Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K.

School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, U.K.

出版信息

ACS Sustain Chem Eng. 2025 May 8;13(19):6972-6981. doi: 10.1021/acssuschemeng.4c10708. eCollection 2025 May 19.

Abstract

Mitigating climate change requires both the reduction of greenhouse gas emissions and the removal of CO from the atmosphere. This study investigates a novel biological pH swing strategy for mineral carbonation at ambient conditions as a potential option for atmospheric CO removal. Through mathematical modeling, we evaluated a mineral carbonation system that utilized and to achieve alternating sulfur reduction and oxidation, respectively, with the cyclic process to effect pH swing for promoting the dissolution of a silicate mineral and the subsequent precipitation of a carbonate mineral to store CO. Sulfur cycles employing two reduced compounds, namely, hydrogen sulfide and thiosulfate, were compared. Our simulation results predicted that it is feasible to use the sulfur cycles to achieve the intended pH swing in a range of 1-10 and hence the acceleration of CO removal from the air. Despite the implementation of the pH swing, gas-liquid mass transfer and mineral dissolution remained rate-limiting compared to biological conversion. Dissolving 35 kg of forsterite in a 1 m reactor takes between 250 and 300 h, leading to the removal of approximately 22 kg of CO through MgCO precipitation, which requires about 180 h. Between the two forms of reduced sulfur, thiosulfate would offer considerable operational advantages over hydrogen sulfide. This theoretical exploration also identified key areas to be investigated to further establish the potential of the sulfur-cycle-based carbonation approach to CO removal.

摘要

缓解气候变化既需要减少温室气体排放,也需要从大气中去除二氧化碳。本研究探讨了一种在环境条件下进行矿物碳酸化的新型生物pH摆动策略,作为去除大气中二氧化碳的一种潜在选择。通过数学建模,我们评估了一种矿物碳酸化系统,该系统分别利用[具体物质1]和[具体物质2]实现交替的硫还原和氧化,通过循环过程实现pH摆动,以促进硅酸盐矿物的溶解以及随后碳酸盐矿物的沉淀来储存二氧化碳。比较了采用两种还原化合物(即硫化氢和硫代硫酸盐)的硫循环。我们的模拟结果预测,利用硫循环在1-10的范围内实现预期的pH摆动并因此加速从空气中去除二氧化碳是可行的。尽管实施了pH摆动,但与生物转化相比,气液传质和矿物溶解仍然是限速步骤。在1立方米的反应器中溶解35千克镁橄榄石需要250至300小时,通过碳酸镁沉淀可去除约22千克二氧化碳,这需要约180小时。在两种还原态硫形式中,硫代硫酸盐比硫化氢具有显著的操作优势。这一理论探索还确定了有待进一步研究的关键领域,以进一步确立基于硫循环的碳酸化方法在去除二氧化碳方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9eab/12093374/4b1533556a10/sc4c10708_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验