Yu Yinkui, Zhang Ning, Hoffman Dominic, Rastogi Dewansh, Woodward Ian R, Fromen Catherine A
Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.
ACS Appl Eng Mater. 2024 Dec 11;2(12):2875-2884. doi: 10.1021/acsaenm.4c00562. eCollection 2024 Dec 27.
Aerosol contamination presents significant challenges across various industries, ranging from healthcare to manufacturing. Over the past few years, open foam filters have gained prominence for their ability to efficiently capture particles while allowing reasonable airflow. In this work, we present the use of 3D-printed idealized open foam-like lattice structures as aerosol filtration media, leveraging advances in additive manufacturing to generate these highly tunable and modular filters. Using parametric design approaches, we fabricated lattice filters with four different unit cell geometries (Cubic, Kelvin, Octahedron, and Weaire-Phelan) via Digital Light Synthesis 3D printing and characterized these structures with X-ray microcomputed tomography. We compared the aerosol filtration performance of the different lattice unit cell geometries using 1 μm polystyrene latex (PSL) aerosol particles, finding the filtration performance to be positively correlated with the single-unit-cell specific surface area. We then expanded our evaluation of deposition efficiency in Kelvin cell lattice structures of varied porosities, again finding a correlation between the specific surface area and deposition performance. Experimental analysis confirmed that deposition primarily occurs through impaction and electrostatic mechanisms within the parameter space. Overall, our findings demonstrate that unit-cell-based lattices can achieve a wide range of aerosol filtration efficiencies (∼10-100%) across various operating conditions (1-4 m/s superficial velocity), offering a highly tunable in-line filtration medium capable of maintaining high efficiency even at elevated airflow rates. This work not only provides essential guidelines for designing and manufacturing 3D-printed lattices as customizable aerosol filters but also highlights the current limitations and challenges in producing these structures.
气溶胶污染在从医疗保健到制造业的各个行业都带来了重大挑战。在过去几年中,开放式泡沫过滤器因其能够有效捕获颗粒同时允许合理气流而备受关注。在这项工作中,我们展示了使用3D打印的理想化开放式泡沫状晶格结构作为气溶胶过滤介质,利用增材制造技术的进步来制造这些高度可调谐且模块化的过滤器。通过参数化设计方法,我们通过数字光合成3D打印制造了具有四种不同单胞几何形状(立方、开尔文、八面体和韦尔-费兰)的晶格过滤器,并用X射线显微计算机断层扫描对这些结构进行了表征。我们使用1μm聚苯乙烯乳胶(PSL)气溶胶颗粒比较了不同晶格单胞几何形状的气溶胶过滤性能,发现过滤性能与单胞比表面积呈正相关。然后,我们扩展了对不同孔隙率的开尔文胞晶格结构中沉积效率的评估,再次发现比表面积与沉积性能之间存在相关性。实验分析证实,在参数空间内,沉积主要通过撞击和静电机制发生。总体而言,我们的研究结果表明,基于单胞的晶格在各种运行条件(表面速度为1-4m/s)下可以实现广泛的气溶胶过滤效率(约10-100%),提供了一种高度可调谐的在线过滤介质,即使在气流速率升高时也能保持高效率。这项工作不仅为设计和制造作为可定制气溶胶过滤器的3D打印晶格提供了基本指导,还突出了生产这些结构时当前的局限性和挑战。