Shee Nirmal Kumar, Kim Hee-Joon
Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Dalton Trans. 2025 Feb 4;54(6):2448-2459. doi: 10.1039/d4dt03277b.
Porphyrin-based two-dimensional porous materials (SnP-H2TCPP, SnP-ZnTCPP) composed of robust Sn(IV)-porphyrin linkages have been synthesized by reacting -dihydroxo[5,10,15,20-tetraphenylporphyrinato]tin(IV) (SnP) with [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin] (HTCPP) and [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato]zinc(II) (ZnTCPP), respectively. The strength of the interaction between the carboxylic acid group of the monomeric porphyrins (HTCPP and ZnTCPP) and the axial hydroxyl moiety of SnP enables the construction of highly stable framework materials, which were characterized by FT-IR, UV-vis, and emmission spectroscopy, powder XRD, elemental analysis, and thermogravimetric analysis (TGA). SnP-H2TCPP and SnP-ZnTCPP absorb visible light strongly over a wide range, demonstrating weak perturbation in the electronic ground state structures of the π-conjugated aromatic moieties compared to the starting monomeric units. TGA indicated that SnP-H2TCPP and SnP-ZnTCPP exhibited greater thermal stability than SnP. The permanent porosity of SnP-H2TCPP and SnP-ZnTCPP resulted in large specific surface areas (BET) of 210.0 m g and 185.0 m g, respectively. Uniform spherical nanoplates with an average diameter in the range of 900-1000 nm were observed for SnP-H2TCPP, whereas a nanocomposite morphology was observed for SnP-ZnTCPP, whose shape and size could not be specifically defined. Finally, the photodegradation performance of SnP-H2TCPP and SnP-ZnTCPP was found to be 89% ( = 0.0179 min) and 97% ( = 0.0246 min) within 120 min, respectively, for the degradation of methylene blue (MB), and 50% ( = 0.0091 min) and 60% ( = 0.0120 min) within 75 min, respectively, for the tetracycline (TC) antibiotic. The enhanced catalytic photodegradation activity of SnP-H2TCPP or SnP-ZnTCPP is attributed to the cooperation between the carboxylate-bearing porphyrin units and SnP.
通过使二羟基[5,10,15,20 - 四苯基卟啉]锡(IV)(SnP)分别与5,10,15,20 - 四(4 - 羧基苯基)卟啉和5,10,15,20 - 四(4 - 羧基苯基)卟啉锌(II)反应,合成了由坚固的Sn(IV) - 卟啉键组成的基于卟啉的二维多孔材料(SnP - H2TCPP、SnP - ZnTCPP)。单体卟啉(HTCPP和ZnTCPP)的羧酸基团与SnP的轴向羟基部分之间相互作用的强度使得能够构建高度稳定的骨架材料,通过傅里叶变换红外光谱(FT - IR)、紫外 - 可见光谱和发射光谱、粉末X射线衍射(XRD)、元素分析和热重分析(TGA)对其进行了表征。SnP - H2TCPP和SnP - ZnTCPP在很宽的范围内强烈吸收可见光,与起始单体单元相比,表明π共轭芳族部分的电子基态结构受到的扰动较弱。TGA表明,SnP - H2TCPP和SnP - ZnTCPP表现出比SnP更高的热稳定性。SnP - H2TCPP和SnP - ZnTCPP的永久孔隙率分别导致了210.0 m²/g和185.0 m²/g的大比表面积(BET)。观察到SnP - H2TCPP为平均直径在900 - 1000 nm范围内的均匀球形纳米片,而对于SnP - ZnTCPP观察到纳米复合形态,其形状和尺寸无法具体界定。最后,发现SnP - H2TCPP和SnP - ZnTCPP对亚甲基蓝(MB)的光降解性能在120分钟内分别为89%(k = 0.0179 min⁻¹)和97%(k = 0.0246 min⁻¹),对四环素(TC)抗生素在75分钟内分别为50%(k = 0.0091 min⁻¹)和60%(k = 0.0120 min⁻¹)。SnP - H2TCPP或SnP - ZnTCPP增强的催化光降解活性归因于含羧酸盐的卟啉单元与SnP之间的协同作用。