Byrka Andrii, Boivin Léo, d'Astous Élodie V, Singhal Rahul, Karsenti Paul-Ludovic, Dauphin-Ducharme Philippe, Witulski Bernhard, Sharma Ganesh D, Harvey Pierre D
Département de chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, Normandie Univ, ENSICAEN & UNICAEN, 6 Bvd Maréchal Juin, 14050 Caen, France.
ACS Appl Mater Interfaces. 2025 Jan 15;17(2):3478-3488. doi: 10.1021/acsami.4c19947. Epub 2025 Jan 2.
Two new nonfused ring nonfullerene electron acceptors, NFAs, (dicarbazolyl)bis(2-(3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) () and -(2-(5,6-fluoro-3-oxo-2,3-dihydro-1-inden-1-ylidene)malononitrile) (), thus exhibiting an A-D-A motif, were synthesized and characterized. As thin films, they exhibit the lowest energy absorption signature near 540 nm, extending down to ∼700 nm. This band is due to an intramolecular charge transfer process from the (nonfused dicarbazoyl; ) moiety to the malononitrile-based units () based on density functional theory calculations (DFT), which are also corroborated by time-dependent DFT (TDDFT) computations. Both NFAs fluoresce in the near-IR region exhibiting a band maximum peaking near 750 nm with biphasic lifetimes in the 75-410 ps time scale. Electrochemical measurements permitted the determination of their HOMO (∼-5.7 eV) and LUMO (∼-4.0 eV) energies. The absorption bands are complementary to those of the commercial copolymer , which was used to prepare binary blends for photovoltaic cell performance assessments (ITO/PEDOT:PSS/active layer/PFN-Br/Ag). The power conversion efficiencies (PCE) are found to be 10.17% for / (short-circuit current = 15.87 mA cm; open-circuit voltage = 1.03 V; fill factor FF = 0.622) and 14.09% for / ( = 20.92 mA cm; = 0.965 V; FF = 0.698). The use of nonfused ring NFAs achieving such high performances is significant and reveals a path toward simpler NFAs for use in organic photovoltaics.
合成并表征了两种新型非稠环非富勒烯电子受体(NFAs),即(二咔唑基)双(2-(3-氧代-2,3-二氢-1-茚-1-亚基)丙二腈)()和 -(2-(5,6-氟-3-氧代-2,3-二氢-1-茚-1-亚基)丙二腈)(),它们呈现出A-D-A结构。作为薄膜,它们在540 nm附近表现出最低能量吸收特征,延伸至约700 nm。基于密度泛函理论计算(DFT),该吸收带归因于从(非稠合二咔唑基;)部分到基于丙二腈的单元()的分子内电荷转移过程,含时DFT(TDDFT)计算也证实了这一点。两种NFAs在近红外区域发出荧光,在750 nm附近呈现出最大发射峰,双相寿命在75 - 410 ps时间尺度内。电化学测量确定了它们的最高占据分子轨道(HOMO,约 - 5.7 eV)和最低未占据分子轨道(LUMO,约 - 4.0 eV)能量。吸收带与商用共聚物的吸收带互补,该共聚物用于制备二元共混物以评估光伏电池性能(ITO/PEDOT:PSS/活性层/PFN-Br/Ag)。发现/的功率转换效率(PCE)为10.17%(短路电流 = 15.87 mA cm;开路电压 = 1.03 V;填充因子FF = 0.622),/的功率转换效率为14.09%( = 20.92 mA cm; = 0.965 V;FF = 0.698)。使用非稠环NFAs实现如此高的性能具有重要意义,并揭示了一条通往用于有机光伏的更简单NFAs的途径。