Suppr超能文献

迈向城市地区更清洁的空气:城市建成环境因素与区域交通的双重影响。

Towards cleaner air in urban areas: The dual influence of urban built environment factors and regional transport.

作者信息

Han Li, Qi Yongjie, Liu Dong, Liu Feiyue, Gao Yuejing, Ren Wenjing, Zhao Jingyuan

机构信息

School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, China; Geological Resources and Geological Engineering Postdoctoral Research Mobile Station, Xi'an University of Science and Technology, Xi'an, Shaanxi, China.

School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi, China.

出版信息

Environ Pollut. 2025 Feb 15;367:125584. doi: 10.1016/j.envpol.2024.125584. Epub 2024 Dec 31.

Abstract

Exposure to air pollution significantly elevates the risk of disease among urban populations. Improving city air quality requires not only traditional emission reduction strategies but also a focus on the intricate impacts of the urban built environment and meteorological elements. The complexity and diversity of factors within the urban built environment pose significant challenges to pollution control. This study employs machine learning to predict the spatial distribution of inhalable particulate matter (PM) and fine particulate matter (PM), integrating the clustering of pollutant-emitting enterprises and prevailing wind direction to trace pollutant sources. The results indicate that, compared to the multiple linear regression model, the R of the PM random forest prediction model improved from 0.64 to 0.88, while the RMSE decreased from 48.63 to 27.34. Similarly, the R of the PM increased from 0.70 to 0.92, and the RMSE decreased from 30.85 to 15.31. High concentrations of PM and PM in Xi'an are primarily concentrated in the northeast and southwest of the central urban area. By integrating a kernel density analysis of polluting enterprises with the analysis of prevailing wind patterns, it is evident that particulate matter in Xi'an is substantially influenced by regional urban transport. Therefore, pollution control efforts must be enhanced through coordinated regional governance. According to the analysis results of the partial dependence plot, reducing winter temperature proves beneficial in reducing PM and PM levels. Effective measures encompass sprinkling and humidifying, reducing traffic emissions, and controlling various dust sources to lower PM. Enhancing ventilation, increasing green spaces, and regulating vehicle and industrial emissions effectively reduce PM. The study's findings offer a scientific foundation for administrative authorities to craft pollution reduction management policies and create adaptable territorial spatial planning. Moreover, they contribute to diminishing public exposure to pollution and improving the quality of public environmental health.

摘要

暴露于空气污染之中会显著增加城市人口患病的风险。改善城市空气质量不仅需要传统的减排策略,还需要关注城市建成环境和气象要素的复杂影响。城市建成环境中各种因素的复杂性和多样性给污染控制带来了重大挑战。本研究运用机器学习来预测可吸入颗粒物(PM)和细颗粒物(PM)的空间分布,整合污染物排放企业的聚类情况和盛行风向以追踪污染源。结果表明,与多元线性回归模型相比,PM随机森林预测模型的R值从0.64提高到了0.88,而均方根误差从48.63降至27.34。同样,PM的R值从0.70提高到0.92,均方根误差从30.85降至15.31。西安市高浓度的PM和PM主要集中在中心城区的东北部和西南部。通过将污染企业的核密度分析与盛行风型分析相结合,可以明显看出西安的颗粒物受区域城市交通的影响很大。因此,必须通过区域协同治理来加强污染控制力度。根据部分依赖图的分析结果,降低冬季气温有利于降低PM和PM水平。有效的措施包括洒水增湿、减少交通排放以及控制各类扬尘源以降低PM。加强通风、增加绿地以及管控车辆和工业排放可有效降低PM。该研究结果为行政部门制定污染减排管理政策和制定适应性领土空间规划提供了科学依据。此外,这些结果有助于减少公众接触污染的机会并提高公共环境卫生质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验