Suppr超能文献

用于增强蛋白酶固定化及在生物技术应用中提高蛋白酶稳定性的藜麦壳羧化纳米纤维素。

Carboxylated nanocellulose from quinoa husk for enhanced protease immobilization and stability of protease in biotechnological applications.

作者信息

Ariaeenejad Shohreh, Motamedi Elaheh

机构信息

Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.

Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P. O. Box: 31535-1897, Karaj, Iran.

出版信息

Sci Rep. 2025 Jan 2;15(1):256. doi: 10.1038/s41598-024-77292-y.

Abstract

Herein, an efficient and feasible approach was developed to oxidize low-cost agricultural waste (quinoa husk, QS) for the synthesis of carboxylated nanocellulose (CNC). The as-prepared rod-like CNCs (average diameter of 10 nm and length of 103 nm) with a high specific surface area (173 m/g) were utilized for the immobilization of a model protease enzyme (PersiProtease1) either physically or via covalent attachment. For chemical immobilization, CNCs were firstly functionalized with N, N'-dicyclohexylcarbodiimide (DCC) to provide DCNCs nanocarrier which could covalently bond to enzyme trough nucleophilic substitution reaction and formation of the amide bond between DCNCs and enzyme. The immobilization efficiency, activity, stability, kinetic parameters, and reusability of covalently attached and physically immobilized PersiProtease1 were similar to those of the free enzyme. Enzyme immobilization resulted in higher thermal stability of the enzyme at elevated temperatures (> 80 °C), and the covalently immobilized enzyme displayed higher reusability than its physically immobilized form (56% vs. 37% activity, after 15 consecutive cycles), which would be rooted in a more tightly attached and less leached enzyme in the case of PersiProtease1/DCNCs. This study demonstrates the significance of using agricultural by-products and the enhanced performance and stability of immobilized proteases.

摘要

在此,开发了一种高效可行的方法,用于氧化低成本农业废弃物(藜麦壳,QS)以合成羧化纳米纤维素(CNC)。所制备的棒状CNC(平均直径为10nm,长度为103nm)具有高比表面积(173m/g),用于通过物理方式或共价连接固定化模型蛋白酶(PersiProtease1)。对于化学固定化,首先用N,N'-二环己基碳二亚胺(DCC)对CNC进行功能化,以提供DCNCs纳米载体,其可通过亲核取代反应与酶共价结合,并在DCNCs和酶之间形成酰胺键。共价连接和物理固定化的PersiProtease1的固定化效率、活性、稳定性、动力学参数和可重复使用性与游离酶相似。酶固定化导致酶在较高温度(>80°C)下具有更高的热稳定性,并且共价固定化的酶比其物理固定化形式表现出更高的可重复使用性(连续15个循环后,活性分别为56%和37%),这源于PersiProtease1/DCNCs情况下酶的结合更紧密且浸出较少。本研究证明了使用农业副产品的重要性以及固定化蛋白酶的性能和稳定性增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aec5/11696053/b1e65a96cfed/41598_2024_77292_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验