Suppr超能文献

星扇图的度量维数

Metric dimension of star fan graph.

作者信息

Prabhu S, Jeba D Sagaya Rani, Stephen Sudeep

机构信息

Department of Mathematics, Rajalakshmi Engineering College, Chennai, 602105, India.

Department of Mathematics, Panimalar Engineering College, Chennai, 600123, India.

出版信息

Sci Rep. 2025 Jan 2;15(1):102. doi: 10.1038/s41598-024-83562-6.

Abstract

Every node in a network is said to be resolved if it can be uniquely identified by a vector of distances to a specific set of nodes. The metric dimension is equivalent to the least possible cardinal number of a resolving set. Conditional resolving sets are obtained by imposing various constraints on resolving set. It is a fundamental parameter that provides insights into the structural properties and navigability of graphs, with diverse applications across different fields. This article focuses on identifying the metric dimension for a new network, star fan graph.

摘要

如果网络中的每个节点都可以通过到特定节点集的距离向量唯一标识,则称该节点已被解析。度量维数等同于解析集的最小可能基数。通过对解析集施加各种约束来获得条件解析集。它是一个基本参数,能深入了解图的结构特性和可导航性,在不同领域有多种应用。本文着重确定一种新网络——星扇图的度量维数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36de/11696725/a1ed39b1a838/41598_2024_83562_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验