Suppr超能文献

一种基于深度合成的新型内部人员入侵检测(DS-IID)模型,用于检测恶意内部人员和人工智能生成的威胁。

A novel deep synthesis-based insider intrusion detection (DS-IID) model for malicious insiders and AI-generated threats.

作者信息

Kotb Hazem M, Gaber Tarek, AlJanah Salem, Zawbaa Hossam M, Alkhathami Mohammed

机构信息

The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.

School of Science, Engineering, and Environment, University of Salford, Manchester, M5 4WT, UK.

出版信息

Sci Rep. 2025 Jan 2;15(1):207. doi: 10.1038/s41598-024-84673-w.

Abstract

Insider threats pose a significant challenge to IT security, particularly with the rise of generative AI technologies, which can create convincing fake user profiles and mimic legitimate behaviors. Traditional intrusion detection systems struggle to differentiate between real and AI-generated activities, creating vulnerabilities in detecting malicious insiders. To address this challenge, this paper introduces a novel Deep Synthesis Insider Intrusion Detection (DS-IID) model. The model employs deep feature synthesis to automatically generate detailed user profiles from event data and utilizes binary deep learning for accurate threat identification. The DS-IID model addresses three key issues: it (i) detects malicious insiders using supervised learning, (ii) evaluates the effectiveness of generative algorithms in replicating real user profiles, and (iii) distinguishes between real and synthetic abnormal user profiles. To handle imbalanced data, the model uses on-the-fly weighted random sampling. Tested on the CERT insider threat dataset, the DS-IID achieved 97% accuracy and an AUC of 0.99. Moreover, the model demonstrates strong performance in differentiating real from AI-generated (synthetic) threats, achieving over 99% accuracy on optimally generated data. While primarily evaluated on synthetic datasets, the high accuracy of the DS-IID model suggests its potential as a valuable tool for real-world cybersecurity applications.

摘要

内部威胁对信息技术安全构成了重大挑战,尤其是随着生成式人工智能技术的兴起,这些技术能够创建令人信服的虚假用户档案并模仿合法行为。传统的入侵检测系统难以区分真实活动和人工智能生成的活动,从而在检测恶意内部人员时产生漏洞。为应对这一挑战,本文引入了一种新颖的深度合成内部入侵检测(DS-IID)模型。该模型采用深度特征合成从事件数据中自动生成详细的用户档案,并利用二元深度学习进行准确的威胁识别。DS-IID模型解决了三个关键问题:它(i)使用监督学习检测恶意内部人员,(ii)评估生成算法在复制真实用户档案方面的有效性,以及(iii)区分真实和合成的异常用户档案。为处理不平衡数据,该模型使用实时加权随机采样。在CERT内部威胁数据集上进行测试时,DS-IID的准确率达到了97%,曲线下面积(AUC)为0.99。此外,该模型在区分真实威胁和人工智能生成的(合成)威胁方面表现出色,在最优生成的数据上准确率超过99%。虽然主要在合成数据集上进行评估,但DS-IID模型的高精度表明其作为现实世界网络安全应用中一种有价值工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b64/11695639/e582631aef0c/41598_2024_84673_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验