Suppr超能文献

透明细胞肾细胞癌中癌症相关细胞衰老基因的表达模式可区分具有临床意义的肿瘤亚类。

Expression pattern of cancer-associated cellular senescence genes in clear cell renal cell carcinoma distinguishes tumor subclasses with clinical implications.

作者信息

Zhu Zhongxu, Cao Qi, Chen Jingyue, Sun Yiyang, Liu Fang, Li Jiang, Tan Miaomiao

机构信息

Biomics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310018, China.

Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.

出版信息

Sci Rep. 2025 Jan 2;15(1):442. doi: 10.1038/s41598-024-84620-9.

Abstract

Clear cell renal cell carcinoma (ccRCC) is a highly lethal subtype of renal cancer. Accumulating evidence suggests cellular senescence impacts tumor development and progression. This study aimed to identify ccRCC subtypes based on a cellular senescence gene signature and assess their clinical relevance. Using hierarchical clustering on the TCGA-KIRC dataset, two senescence-related subtypes were identified and validated in independent datasets. These subtypes exhibited distinct dysregulation of cancer-related pathways, including the p53 pathway. The C2 subtype was associated with poorer overall survival, higher tumor grade and stage, low hemoglobin, and elevated platelet and serum calcium levels. Patients with the C2 subtype also had lower endothelial cell infiltration, indicating reduced benefit from anti-PD-1 immunotherapy. A nomogram based on these subtypes effectively predicted 1-, 3-, and 5-year survival outcomes. These findings highlight two distinct senescence-related ccRCC subtypes that correlate with prognosis and therapy response, offering insights for personalized treatment strategies.

摘要

透明细胞肾细胞癌(ccRCC)是一种具有高度致死性的肾癌亚型。越来越多的证据表明细胞衰老会影响肿瘤的发生和发展。本研究旨在基于细胞衰老基因特征识别ccRCC亚型,并评估其临床相关性。通过对TCGA-KIRC数据集进行层次聚类,在独立数据集中识别并验证了两种与衰老相关的亚型。这些亚型在包括p53通路在内的癌症相关通路中表现出明显的失调。C2亚型与较差的总生存期、较高的肿瘤分级和分期、低血红蛋白以及升高的血小板和血清钙水平相关。C2亚型的患者内皮细胞浸润也较低,表明抗PD-1免疫治疗的获益减少。基于这些亚型的列线图有效地预测了1年、3年和5年生存结局。这些发现突出了两种与衰老相关的不同ccRCC亚型,它们与预后和治疗反应相关,为个性化治疗策略提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5d3/11695857/b1dc56665553/41598_2024_84620_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验