Suppr超能文献

通过将人工智能与实验性直流到直流降压-升压转换器相结合实现增强型光伏面板诊断。

Enhanced photovoltaic panel diagnostics through AI integration with experimental DC to DC Buck Boost converter implementation.

作者信息

Labiod Chouaib, Meneceur Redha, Bebboukha Ali, Hechifa Abdelmoumene, Srairi Kamel, Ghanem Adel, Zaitsev Ievgen, Bajaj Mohit

机构信息

Department of Mechanical Engineering, University of El Oued, El Oued, 39000, Algeria.

Laboratory of Energy Systems Modeling (LMSE), Department of Electrical Engineering, University of Biskra, BP 145, Biskra, 07000, Algeria.

出版信息

Sci Rep. 2025 Jan 2;15(1):295. doi: 10.1038/s41598-024-84365-5.

Abstract

Health monitoring and analysis of photovoltaic (PV) systems are critical for optimizing energy efficiency, improving reliability, and extending the operational lifespan of PV power plants. Effective fault detection and monitoring are vital for ensuring the proper functioning and maintenance of these systems. PV power plants operating under fault conditions show significant deviations in current-voltage (I-V) characteristics compared to those under normal conditions. This paper introduces a diagnostic methodology for photovoltaic panels using I-V curves, enhanced by new techniques combining optimization and classification-based artificial intelligence. The research is organized into two key sections. The first section outlines the implementation of a DC/DC buck-boost converter, which is designed to extract and display real-time data from the PV system based on actual (I-V) measurements. The second section focuses on the comprehensive processing of the experimental dataset, where the Harris Hawks Optimization (HHO) algorithm is combined with machine learning methods to identify the most critical features. The HHO algorithm is combined with an advanced machine learning model, XGBoost, to accurately detect faults within the PV system. The proposed HHO-XGBoost algorithm achieves an impressive accuracy of 99.49%, outperforming other classification-based artificial intelligence methods in fault detection. In validation and comparison with previous approaches, the HHO-XGBoost model consistently outperforms established methods such as GADF-ANN, PCA-SVM, PNN, and Fuzzy Logic, achieving an overall accuracy of 98.48%. This outstanding performance confirms the model's effectiveness in accurately diagnosing PV system conditions, further validating its robustness and reliability in fault detection and classification.

摘要

光伏(PV)系统的健康监测与分析对于优化能源效率、提高可靠性以及延长光伏电站的运行寿命至关重要。有效的故障检测与监测对于确保这些系统的正常运行和维护至关重要。与正常运行条件下相比,在故障条件下运行的光伏电站在电流-电压(I-V)特性方面表现出显著偏差。本文介绍了一种利用I-V曲线对光伏面板进行诊断的方法,并通过结合优化和基于分类的人工智能的新技术进行了增强。该研究分为两个关键部分。第一部分概述了DC/DC降压-升压转换器的实现,该转换器旨在基于实际(I-V)测量从光伏系统中提取并显示实时数据。第二部分重点关注实验数据集的综合处理,其中将哈里斯鹰优化(HHO)算法与机器学习方法相结合,以识别最关键的特征。HHO算法与先进的机器学习模型XGBoost相结合,以准确检测光伏系统内的故障。所提出的HHO-XGBoost算法实现了令人印象深刻的99.49%的准确率,在故障检测方面优于其他基于分类的人工智能方法。在与先前方法的验证和比较中,HHO-XGBoost模型始终优于诸如GADF-ANN、PCA-SVM、PNN和模糊逻辑等既定方法,总体准确率达到98.48%。这一出色的性能证实了该模型在准确诊断光伏系统状况方面的有效性,进一步验证了其在故障检测和分类方面的稳健性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc2b/11697571/6f0de66c063e/41598_2024_84365_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验