Wang Lina, Wang Ning, Wu Xin, Liu Baoze, Liu Qi, Li Bo, Zhang Dong, Kalasariya Nikhil, Zhang Yuanfang, Yan Xunlei, Wang Jungan, Zheng Peiting, Yang Jie, Jin Hao, Wang Chenyue, Qian Liangchen, Yang Bin, Wang Yan, Cheng Xuelan, Song Tinglu, Stolterfoht Martin, Zeng Xiao Cheng, Zhang Xinyu, Xu Menglei, Bai Yang, Xu Fang, Zhou Cangtao, Zhu Zonglong
Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology (iLaT) and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China.
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Adv Mater. 2025 Feb;37(7):e2416150. doi: 10.1002/adma.202416150. Epub 2025 Jan 2.
Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor. The approach not only enables excellent compositional uniformity in the wet-film stage but also induces preferred orientation along the (001) plane following nucleation, leading to enhanced homogeneity of the perovskite film in both vertical and horizontal directions over long-length scales. The resulting wide-bandgap perovskite solar cells yield exceptional open-circuit voltage-fill factor products (V × FF) of 1.074 and 1.040 in small- (0.0414 cm) and large-area (1.0208 cm) devices, respectively. Corresponding large-area tandem solar cells based on the Tunnel Oxide Passivated Contact (TOPCon) silicon subcells achieve a record PCE of 31.32% with a remarkable V of 1.931 V and FF of 81.54%.
钙钛矿/硅串联太阳能电池(TSCs)因其出色的功率转换效率(PCEs)而成为商业化的有前途的候选者。然而,对于在粗糙硅衬底上生长的钙钛矿层来说,控制结晶过程和减轻相/成分不均匀性是一个相当大的挑战,最终限制了TSC的效率和稳定性。在此,本研究报告了一种“卤化物锁定”策略,该策略通过引入多功能铵盐硫代乙酰乙酰胺盐酸盐(TAACl)与混合卤化物钙钛矿前驱体中的所有类型的阳离子和阴离子结合,同时调节宽带隙钙钛矿的成核和晶体生长过程。该方法不仅在湿膜阶段实现了优异的成分均匀性,而且在成核后诱导沿(001)平面的择优取向,从而在长长度尺度上提高了钙钛矿薄膜在垂直和水平方向上的均匀性。由此产生的宽带隙钙钛矿太阳能电池在小面积(0.0414 cm²)和大面积(1.0208 cm²)器件中分别产生了1.074和1.040的优异开路电压-填充因子乘积(V×FF)。基于隧道氧化物钝化接触(TOPCon)硅子电池的相应大面积串联太阳能电池实现了创纪录的31.32%的PCE,具有1.931 V的显著V值和81.54%的FF值。