Fu Shiqiang, Zhou Shun, Meng Weiwei, Li Guang, Dong Kailian, Pu Dexin, Zhou Jin, Wang Chen, Guan Hongling, Shao Wenlong, Huang Lishuai, Su Zhenhuang, Wang Cheng, Chen Guoyi, Jia Peng, Wang Jiahao, Xu Zuxiong, Gao Xingyu, Cong Hengjiang, Wang Ti, Xiao Chuanxiao, Fang Guojia, Ke Weijun
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China.
Nat Nanotechnol. 2025 Apr 17. doi: 10.1038/s41565-025-01899-z.
All-perovskite tandem solar cells (TSCs) offer exceptional performance and versatile applicability. However, a significant challenge persists in bridging the power conversion efficiency (PCE) gap between small- and large-area (>1 cm) devices, which presents a formidable barrier to the commercialization of all-perovskite TSCs. Here we introduce a specialized crystal-modifying agent, piracetam, tailored for wide-bandgap perovskites, homogenizing top wide-bandgap subcells and enabling the construction of efficient large-area TSCs. Piracetam, featuring amide and pyrrolidone moieties, initially modulates perovskite nucleation, resulting in large-sized grains, preferred (110) orientation, enhanced crystallinity and uniform optoelectronic properties. During the subsequent annealing process, it further eliminates residual PbI and facilitates the formation of one-dimensional (Pi)PbI (Pi = piracetam) perovskite nanoneedles at the grain boundaries and surfaces. Consequently, single-junction 1.77 eV-bandgap solar cells achieve a certified open-circuit voltage of 1.36 V and a PCE of 20.35%. Furthermore, our monolithic two-terminal all-perovskite TSCs, with aperture areas of 0.07 cm and 1.02 cm, yield PCEs of 28.71% (stabilized 28.55%, certified 28.13%) and 28.20% (stabilized 28.05%, certified 27.30%), respectively, demonstrating a minimal PCE loss of 0.51% when transitioning from small-area to large-area devices. In addition, piracetam demonstrates broad applicability across different perovskite compositions, increasing the PCE from 23.56% to 25.71% for single-junction 1.56 eV-bandgap counterparts. This method thus provides an effective pathway for scalable and efficient all-perovskite TSCs.
全钙钛矿串联太阳能电池(TSCs)具有卓越的性能和广泛的适用性。然而,在弥合小面积和大面积(>1平方厘米)器件之间的功率转换效率(PCE)差距方面,仍然存在重大挑战,这对全钙钛矿TSCs的商业化构成了巨大障碍。在此,我们引入了一种专门为宽带隙钙钛矿量身定制的晶体改性剂——吡拉西坦,它能使顶部宽带隙子电池均匀化,并实现高效大面积TSCs的构建。吡拉西坦具有酰胺和吡咯烷酮基团,最初可调节钙钛矿成核,从而形成大尺寸晶粒、择优(110)取向、增强的结晶度和均匀的光电性能。在随后的退火过程中,它进一步消除残余的PbI,并促进在晶界和表面形成一维(Pi)PbI(Pi = 吡拉西坦)钙钛矿纳米针。因此,单结1.77 eV带隙太阳能电池实现了1.36 V的认证开路电压和20.35%的PCE。此外,我们的单片双端全钙钛矿TSCs,孔径面积分别为0.07平方厘米和1.02平方厘米,PCE分别为28.71%(稳定值28.55%,认证值28.13%)和28.20%(稳定值28.05%,认证值27.30%),从小面积器件过渡到大面积器件时,PCE损失最小仅为0.51%。此外,吡拉西坦在不同钙钛矿组成中都具有广泛的适用性,对于单结1.56 eV带隙的同类器件,其PCE从23.56%提高到了25.71%。因此,该方法为可扩展且高效的全钙钛矿TSCs提供了一条有效途径。