Liu Yu, Yan Penglei, Li Xiaodong, Li Qingye, Li Shengming, Han Hao, Chu Mingyu, Fu Jie, Cao Muhan, Xu Panpan, Zhang Qiao, He Le, Chen Jinxing
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China.
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany.
Adv Mater. 2025 Feb;37(7):e2412740. doi: 10.1002/adma.202412740. Epub 2025 Jan 2.
The selective recycling of mixed plastic wastes with similar structural units is challenging. While heterogeneous catalysis shows potential for selective recycling, challenges such as complex mass transfer at multiphase interfaces and unclear catalytic mechanisms have slowed progress. In this study, a breakthrough in recycling mixed polyester wastes is introduced using heterogeneous photothermal catalysis. By adding co-solvents, the difficulties associated with multiphase interfacial mass transfer are overcome. Grain boundary (GB)-rich CeO photothermal catalysts are used to selectively glycolyze mixed poly(ethylene terephthalate) (PET) and poly(bisphenol A carbonate) (PC) plastics into bisphenol A (BPA) and bis(2-hydroxyethyl) terephthalate (BHET), achieving yields of 97.8% and 93.4%, respectively. The high concentration of oxygen vacancies in GB-rich CeO catalysts adjusts the adsorption energy of intermediates, leading to more selective and efficient depolymerization compared to GB-poor CeO catalysts. The economic and environmental analysis demonstrates that this process, which utilizes heterogeneous photothermal catalysis, provides significant energy savings and carbon reduction, representing a major advancement in mixed plastic waste recycling.
对具有相似结构单元的混合塑料废物进行选择性回收具有挑战性。虽然多相催化在选择性回收方面显示出潜力,但诸如多相界面处复杂的传质以及不明确的催化机制等挑战减缓了进展。在本研究中,介绍了利用多相光热催化在回收混合聚酯废物方面取得的突破。通过添加共溶剂,克服了与多相界面传质相关的困难。使用富含晶界(GB)的CeO光热催化剂将混合聚对苯二甲酸乙二酯(PET)和聚碳酸双酚A(PC)塑料选择性地糖解为双酚A(BPA)和对苯二甲酸双(2-羟乙酯)(BHET),产率分别达到97.8%和93.4%。与贫GB的CeO催化剂相比,富含GB的CeO催化剂中高浓度的氧空位调节了中间体的吸附能,从而实现了更具选择性和高效的解聚。经济和环境分析表明,这一利用多相光热催化的过程可显著节省能源和减少碳排放,代表了混合塑料废物回收领域的一项重大进展。