Rathore Saima, Higgins Ixavier A, Wang Jian, Kennedy Ian A, Iaccarino Leonardo, Burnham Samantha C, Pontecorvo Michael J, Shcherbinin Sergey
Department of Neurology and Department of Biomedical Informatics Emory University Atlanta Georgia USA.
Eli Lilly and Company Indianapolis Indiana USA.
Alzheimers Dement (N Y). 2024 Oct 29;10(4):e70005. doi: 10.1002/trc2.70005. eCollection 2024 Oct-Dec.
Alzheimer's disease is partially characterized by the progressive accumulation of aggregated tau-containing neurofibrillary tangles. Although the association between accumulated tau, neurodegeneration, and cognitive decline is critical for disease understanding and clinical trial design, we still lack robust tools to predict individualized trajectories of tau accumulation. Our objective was to assess whether brain imaging biomarkers of flortaucipir-positron emission tomography (PET), in combination with clinical and genomic measures, could predict future pathological tau accumulation.
We quantified the disease profile of participants ( = 276) using a comprehensive set of descriptors, including clinical/demographic (age, diagnosis, amyloid status, sex, race, ethnicity), genetic (apolipoprotein E [APOE]-ε4), and flortaucipir-PET imaging measures (regional flortaucipir standardized uptake value ratio [SUVr] and comprehensive radiomic texture features extracted from Automated Anatomical Labeling template regions). We trained an AdaBoost machine learning algorithm in a 2:1 split train-test configuration to derive a prognostic index that (i) stratifies individualized brain regions including global (AD-signature region) and lobar regions (frontal, occipital, parietal, temporal) into stable/slow- and fast-progressors based on future tau accumulation, and (ii) forecasts individualized regional annualized-rate-of-change in flortaucipir-PET SUVr. Further, we developed an adaptive model incorporating flortaucipir-PET measurements from the baseline and intermediate timepoints to predict annualized-rate-of-change.
In binary classification for predicting stable/slow- versus fast-progressors, the area-under-the-receiver-operating-characteristic curve was 0.86 in the AD-signature region and 0.83, 0.82, 0.84, and 0.83 in frontal, occipital, parietal, and temporal regions, respectively. The trained models successfully predicted annualized-rate-of-change of flortaucipir-PET regional flortaucipir SUVr in AD-signature and lobar regions (Pearson-correlation []: AD-signature = 0.73; frontal = 0.73; occipital = 0.71; parietal = 0.70; temporal = 0.69). The models' performance in predicting annualized-rate-of-change slightly increased when imaging features from intermediate timepoints were used in the adaptive setting (: AD-signature = 0.79; frontal = 0.87; occipital = 0.83; parietal = 0.74; temporal = 0.82).
Taken together, our results propose a robust approach to predict future tau accumulation that may improve the ability to enroll, stratify, and gauge efficacy in clinical trial participants.
Machine learning predicts the future rate of tau accumulation in Alzheimer's disease.Tau prediction in lobar/global regions benefits from diverse multimodal features.This prognostic index can serve as a sensitive tool for patient stratification.
阿尔茨海默病的部分特征是含有tau蛋白的神经原纤维缠结逐渐积累。尽管积累的tau蛋白、神经退行性变和认知衰退之间的关联对于理解疾病和设计临床试验至关重要,但我们仍然缺乏可靠的工具来预测tau蛋白积累的个体轨迹。我们的目的是评估氟代脱氧葡萄糖正电子发射断层扫描(PET)的脑成像生物标志物,结合临床和基因组测量,是否能够预测未来病理性tau蛋白的积累。
我们使用一套全面的描述指标对参与者(n = 276)的疾病特征进行量化,这些指标包括临床/人口统计学(年龄、诊断、淀粉样蛋白状态、性别、种族、民族)、遗传(载脂蛋白E [APOE]-ε4)以及氟代脱氧葡萄糖-PET成像测量(区域氟代脱氧葡萄糖标准化摄取值比率 [SUVr] 以及从自动解剖标记模板区域提取的综合放射组学纹理特征)。我们在2:1的训练-测试配置中训练了一个AdaBoost机器学习算法,以得出一个预后指数,该指数(i)根据未来tau蛋白的积累情况,将包括全局(AD特征区域)和脑叶区域(额叶、枕叶、顶叶、颞叶)在内的个体脑区分为稳定/缓慢进展者和快速进展者,并且(ii)预测氟代脱氧葡萄糖-PET SUVr的个体区域年化变化率。此外,我们开发了一个自适应模型,该模型纳入了基线和中间时间点的氟代脱氧葡萄糖-PET测量值,以预测年化变化率。
在预测稳定/缓慢进展者与快速进展者的二元分类中,AD特征区域的受试者工作特征曲线下面积为0.86,额叶、枕叶、顶叶和颞叶区域分别为0.83、0.82、0.84和0.83。训练后的模型成功预测了AD特征区域和脑叶区域氟代脱氧葡萄糖-PET区域氟代脱氧葡萄糖SUVr的年化变化率(皮尔逊相关系数 [r]:AD特征区域 = 0.73;额叶 = 0.73;枕叶 = 0.71;顶叶 = 0.70;颞叶 = 0.69)。当在自适应设置中使用中间时间点的成像特征时,模型在预测年化变化率方面的性能略有提高(r:AD特征区域 = 0.79;额叶 = 0.87;枕叶 = 0.83;顶叶 = 0.74;颞叶 = 0.82)。
综上所述,我们的结果提出了一种可靠的方法来预测未来tau蛋白的积累,这可能会提高在临床试验参与者中进行招募、分层和评估疗效的能力。
机器学习预测阿尔茨海默病中tau蛋白积累的未来速率。脑叶/全局区域的tau蛋白预测受益于多样的多模态特征。这个预后指数可作为患者分层的敏感工具。