Department of Psychology, University of Cambridge, Cambridge, UK.
Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
Nat Commun. 2022 Apr 7;13(1):1887. doi: 10.1038/s41467-022-28795-7.
The early stages of Alzheimer's disease (AD) involve interactions between multiple pathophysiological processes. Although these processes are well studied, we still lack robust tools to predict individualised trajectories of disease progression. Here, we employ a robust and interpretable machine learning approach to combine multimodal biological data and predict future pathological tau accumulation. In particular, we use machine learning to quantify interactions between key pathological markers (β-amyloid, medial temporal lobe atrophy, tau and APOE 4) at mildly impaired and asymptomatic stages of AD. Using baseline non-tau markers we derive a prognostic index that: (a) stratifies patients based on future pathological tau accumulation, (b) predicts individualised regional future rate of tau accumulation, and (c) translates predictions from deep phenotyping patient cohorts to cognitively normal individuals. Our results propose a robust approach for fine scale stratification and prognostication with translation impact for clinical trial design targeting the earliest stages of AD.
阿尔茨海默病(AD)的早期阶段涉及多种病理生理过程的相互作用。尽管这些过程已经得到了很好的研究,但我们仍然缺乏强大的工具来预测个体疾病进展的轨迹。在这里,我们采用一种强大且可解释的机器学习方法来结合多模态生物数据,并预测未来的病理性 tau 积累。具体来说,我们使用机器学习来量化 AD 轻度受损和无症状阶段关键病理标志物(β-淀粉样蛋白、内侧颞叶萎缩、tau 和 APOE4)之间的相互作用。利用基线非 tau 标志物,我们得出一个预后指数,该指数可以:(a) 根据未来病理性 tau 积累对患者进行分层,(b) 预测个体未来 tau 积累的区域速率,以及 (c) 将深度表型患者队列的预测转化为认知正常个体。我们的研究结果提出了一种针对 AD 早期阶段的强大的精细分层和预后方法,具有临床试验设计的翻译影响。