Suppr超能文献

利用人工神经网络改进用于疲劳分析的焊接管节点梁式单元模型。

Improvement of beam type element models of welded tubular junctions for fatigue analysis using artificial neural networks.

作者信息

Perez JesusAngel, Kaiser Ingo, Badea Francisco

机构信息

Department of Construction and Manufacturing Engineering, Mechanical Engineering Area, University of Oviedo, 33203, Gijón, Spain.

Department of Industrial Engineering and Automotive, Nebrija University, Santa Cruz de Marcendo 27, 28040, Madrid, Spain.

出版信息

Heliyon. 2024 Nov 6;10(22):e40181. doi: 10.1016/j.heliyon.2024.e40181. eCollection 2024 Nov 30.

Abstract

The use of numerical methods for structural analysis has been increasingly integrated within the design process in different engineering fields over the last decades, inasmuch as the capacity of the computing resources have growth. This gave rise to calculation techniques based on virtual models such as the finite element method, which is nowadays a reference method for evaluation of complex tubular structures with vast application in the industry. For such type of structures, modeling approaches based on beam type elements are usually employed since they provide simplicity and low computational costs. Nevertheless, these elements have the drawback that they cannot account for local geometric characteristics and therefore consider and strain concentrations consequence of the local joint geometry. These local strains are of special concern in welded junctions subjected to fatigue loads, since are the ones that will most probably lead to failure. Consequently, improving beam type elements takes special relevance. In this scenario, the present paper evaluates a novel methodology to improve strain results of beam element type models of welded T-junctions using artificial neural networks to predict the correction values depending on the junction geometry and load type. Detailed validated models are used as reference for network training. The paper first evidence the importance of the adequate selection of the training data set in the network precision and a methodology to ensure the best network selection is described. Then, the network capability to correct beam element type deviations is demonstrated. The obtained results show that the aid of neural networks to finite element beam T-junctions models can improve local strain result deviations by more than 90 % in most cases, which potentially allows performing fatigue analysis using this simplified modelling technique.

摘要

在过去几十年里,随着计算资源能力的提升,数值方法在结构分析中的应用在不同工程领域越来越多地融入到设计过程中。这催生了基于虚拟模型的计算技术,如有限元方法,如今它是评估复杂管状结构的参考方法,在工业中有广泛应用。对于这类结构,通常采用基于梁单元的建模方法,因为它们简单且计算成本低。然而,这些单元的缺点是无法考虑局部几何特征,因此不能考虑局部节点几何形状导致的应变集中。在承受疲劳载荷的焊接节点中,这些局部应变特别值得关注,因为它们很可能导致失效。因此,改进梁单元具有特殊的意义。在这种情况下,本文评估了一种新颖的方法,使用人工神经网络根据节点几何形状和载荷类型预测校正值,以改进焊接T型节点梁单元模型的应变结果。详细的经过验证的模型用作网络训练的参考。本文首先证明了在网络精度方面适当选择训练数据集的重要性,并描述了一种确保最佳网络选择的方法。然后,展示了网络校正梁单元类型偏差的能力。所得结果表明,在大多数情况下,神经网络对有限元梁T型节点模型的辅助可以将局部应变结果偏差降低90%以上,这可能使得使用这种简化建模技术进行疲劳分析成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0678/11693883/047665d2a72a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验