文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新兴的可穿戴声学传感技术

Emerging Wearable Acoustic Sensing Technologies.

作者信息

Liu Tao, Mao Yuchen, Dou Hanjie, Zhang Wangyang, Yang Jiaqian, Wu Pengfan, Li Dongxiao, Mu Xiaojing

机构信息

Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.

出版信息

Adv Sci (Weinh). 2025 Feb;12(6):e2408653. doi: 10.1002/advs.202408653. Epub 2025 Jan 3.


DOI:10.1002/advs.202408653
PMID:39749384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11809411/
Abstract

Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy. Furthermore, with the recent development of artificial intelligence technology applied to speech recognition, speech recognition devices, and systems capable of assisting disabled individuals in interacting with scenes are constantly being updated. This review meticulously summarizes the sensing mechanisms, materials, structural design, and multidisciplinary applications of wearable acoustic devices applied to human health and human-computer interaction. Further, the advantages and disadvantages of the different approaches used in flexible acoustic devices in various fields are examined. Finally, the current challenges and a roadmap for future research are analyzed based on existing research progress to achieve more comprehensive and personalized healthcare.

摘要

声音信号不仅是主要的通信媒介,还在医学诊断和故障检测等领域有应用。随着公共医疗资源压力日益增大,以及残疾人每天面临的挑战,促进低成本私人医疗保健的解决方案前景广阔。声学方法因其与其他医疗解决方案相比技术复杂性较低,以及人体对声能的高安全阈值而受到广泛研究。此外,随着人工智能技术在语音识别方面的最新发展,能够协助残疾人与场景进行交互的语音识别设备和系统也在不断更新。本综述精心总结了应用于人类健康和人机交互的可穿戴声学设备的传感机制、材料、结构设计及多学科应用。此外,还研究了柔性声学设备在各个领域中使用的不同方法的优缺点。最后,基于现有研究进展分析当前挑战和未来研究路线图,以实现更全面和个性化的医疗保健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/7816344897e5/ADVS-12-2408653-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/1e6f25d54d7f/ADVS-12-2408653-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/2a1f058830c2/ADVS-12-2408653-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/0bf21a0846cb/ADVS-12-2408653-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/93549a18e586/ADVS-12-2408653-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/7f5a90f13d55/ADVS-12-2408653-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/8e98e120638e/ADVS-12-2408653-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/fc1a12377f64/ADVS-12-2408653-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/178692cd13b4/ADVS-12-2408653-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/f0fddc245cab/ADVS-12-2408653-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/8ddde18ae8b5/ADVS-12-2408653-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/0b7aa62c0347/ADVS-12-2408653-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/686dd6338b0b/ADVS-12-2408653-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/c1d41c3dc949/ADVS-12-2408653-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/4cd0ebe6b950/ADVS-12-2408653-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/8be75d4ba4c5/ADVS-12-2408653-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/7cd5fa1c53df/ADVS-12-2408653-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/7b896bfebff4/ADVS-12-2408653-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/7816344897e5/ADVS-12-2408653-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/1e6f25d54d7f/ADVS-12-2408653-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/2a1f058830c2/ADVS-12-2408653-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/0bf21a0846cb/ADVS-12-2408653-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/93549a18e586/ADVS-12-2408653-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/7f5a90f13d55/ADVS-12-2408653-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/8e98e120638e/ADVS-12-2408653-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/fc1a12377f64/ADVS-12-2408653-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/178692cd13b4/ADVS-12-2408653-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/f0fddc245cab/ADVS-12-2408653-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/8ddde18ae8b5/ADVS-12-2408653-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/0b7aa62c0347/ADVS-12-2408653-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/686dd6338b0b/ADVS-12-2408653-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/c1d41c3dc949/ADVS-12-2408653-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/4cd0ebe6b950/ADVS-12-2408653-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/8be75d4ba4c5/ADVS-12-2408653-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/7cd5fa1c53df/ADVS-12-2408653-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/7b896bfebff4/ADVS-12-2408653-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d05b/11809411/7816344897e5/ADVS-12-2408653-g016.jpg

相似文献

[1]
Emerging Wearable Acoustic Sensing Technologies.

Adv Sci (Weinh). 2025-2

[2]
Insights into Materials, Physics, and Applications in Flexible and Wearable Acoustic Sensing Technology.

Adv Mater. 2024-3

[3]
A High-Fidelity Skin-Attachable Acoustic Sensor for Realizing Auditory Electronic Skin.

Adv Mater. 2022-5

[4]
Flexible Electronics toward Wearable Sensing.

Acc Chem Res. 2019-2-15

[5]
Advances in Portable and Wearable Acoustic Sensing Devices for Human Health Monitoring.

Sensors (Basel). 2024-8-19

[6]
Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems.

Small. 2023-7

[7]
Revolutionizing human healthcare with wearable sensors for monitoring human strain.

Colloids Surf B Biointerfaces. 2025-2

[8]
Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications.

Adv Mater. 2024-7

[9]
Flexible, wearable mechano-acoustic sensors for body sound monitoring applications.

Nanoscale. 2025-4-17

[10]
Machine learning-assisted wearable sensing systems for speech recognition and interaction.

Nat Commun. 2025-3-10

引用本文的文献

[1]
NIR-Responsive Microbubble Delivery Platforms for Controlled Drug Release in Cancer Therapy.

Materials (Basel). 2025-6-10

[2]
Intelligent planetary gear fault diagnosis system based on MEMS acoustic emission sensor.

Microsyst Nanoeng. 2025-6-18

[3]
Analysis of Personalized Cardiovascular Drug Therapy: From Monitoring Technologies to Data Integration and Future Perspectives.

Biosensors (Basel). 2025-3-17

[4]
The Influence of DMSO on PVA/PVDF Hydrogel Properties: From Materials to Sensors Applications.

Gels. 2025-2-13

本文引用的文献

[1]
A Wearable, Steerable, Transcranial Low-Intensity Focused Ultrasound System.

J Ultrasound Med. 2025-2

[2]
Ultrasound-responsive microfibers promoted infected wound healing with neuro-vascularization by segmented sonodynamic therapy and electrical stimulation.

Biomaterials. 2025-2

[3]
Estimation of joint torque in dynamic activities using wearable A-mode ultrasound.

Nat Commun. 2024-7-9

[4]
Injectable ultrasonic sensor for wireless monitoring of intracranial signals.

Nature. 2024-6

[5]
Noninvasive imaging-guided ultrasonic neurostimulation with arbitrary 2D patterns and its application for high-quality vision restoration.

Nat Commun. 2024-5-27

[6]
Transcranial volumetric imaging using a conformal ultrasound patch.

Nature. 2024-5

[7]
Acoustically Enhanced Triboelectric Stethoscope for Ultrasensitive Cardiac Sounds Sensing and Disease Diagnosis.

Adv Mater. 2024-7

[8]
Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation.

Nat Commun. 2024-5-13

[9]
Hierarchical Piezoelectric Composites for Noninvasive Continuous Cardiovascular Monitoring.

Adv Mater. 2024-6

[10]
Flexible large-area ultrasound arrays for medical applications made using embossed polymer structures.

Nat Commun. 2024-3-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索