Suppr超能文献

基因组测序时代的结构变异解读:细胞遗传学的经验教训

Structural Variation Interpretation in the Genome Sequencing Era: Lessons from Cytogenetics.

作者信息

Pizzo Lucilla, Rudd M Katharine

机构信息

Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.

Cytogenetics and Genomic Microarray Lab, ARUP Laboratories, Salt Lake City, UT, United States.

出版信息

Clin Chem. 2025 Jan 3;71(1):119-128. doi: 10.1093/clinchem/hvae186.

Abstract

BACKGROUND

Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting. In this review, we describe SV patterns of common cytogenetic abnormalities for laboratorians who review GS data.

CONTENT

GS has the potential to detect diverse chromosomal abnormalities and sequence breakpoint junctions to clarify variant structure. No single GS analysis pipeline can detect all SV, and visualization of sequence data is crucial to recognize specific patterns. Here we describe genomic signatures of translocations, inverted duplications adjacent to terminal deletions, recombinant chromosomes, marker chromosomes, ring chromosomes, isodicentric and isochromosomes, and mosaic aneuploidy. Distinguishing these more complex abnormalities from simple deletions and duplications is critical for phenotypic interpretation and recurrence risk recommendations.

SUMMARY

Unlike single-nucleotide variant calling, identification of chromosome rearrangements by GS requires further processing and multiple callers. SV databases have caveats and limitations depending on the platform (CMA vs sequencing) and resolution (exome vs genome). In the rapidly evolving era of clinical genomics, where a single test can identify both sequence and structural variants, optimal patient care stems from the integration of molecular and cytogenetic expertise.

摘要

背景

结构变异(SV)被定义为大于1 kb的平衡性和非平衡性染色体重排,是种系和肿瘤性疾病的主要促成因素。历史上,大的变异是通过染色体分析来评估的,现在通常通过染色体微阵列分析(CMA)来识别。基因组测序(GS)在临床中的应用日益增加,以及患病新生儿和儿童中染色体异常的相对高发病率凸显了准确解释和报告SV的必要性。在本综述中,我们为审查GS数据的实验室人员描述常见细胞遗传学异常的SV模式。

内容

GS有潜力检测各种染色体异常并对序列断点连接进行测序以阐明变异结构。没有单一的GS分析流程能够检测所有的SV,序列数据的可视化对于识别特定模式至关重要。在这里,我们描述了易位、末端缺失旁的反向重复、重组染色体、标记染色体、环状染色体、等臂双着丝粒染色体和等臂染色体以及嵌合非整倍体的基因组特征。将这些更复杂的异常与简单的缺失和重复区分开来对于表型解释和复发风险建议至关重要。

总结

与单核苷酸变异检测不同,通过GS识别染色体重排需要进一步处理和多个调用程序。SV数据库根据平台(CMA与测序)和分辨率(外显子组与基因组)存在一些注意事项和局限性。在临床基因组学快速发展的时代,单一检测可以识别序列和结构变异,最佳的患者护理源于分子和细胞遗传学专业知识的整合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验